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An approach to stereo based local path planning in unstructured
environments is presented. The approach differs from previous stereo based
and image based planning systems (i.e. top-down occupancy grid planners,
autonomous highway driving algorithms, and view-sequenced route
representation), in that it uses specialized cost functions to find paths through
an occupancy grid representation of the world directly in the image plane, and
forgoes the standard projection of cost information from the image plane
down onto a top-down 2D Cartesian cost map. Three cost metrics for path
selection in image space are discussed. A basic image based planning system
is presented, and its susceptibility to rotational and translational oscillation is
discussed. Two extensions to the basic system are presented that overcome
these limitations—a cylindrical based image system and a hierarchical
planning system. All three systems are implemented in an autonomous robot
and are tested against a standard top-down 2D Cartesian planning system on
three outdoor courses of varying difficulty. It was found that the basic image
based planning system fails under certain conditions; however, the cylindrical
based system is well suited to the task of local path planning and for use as a

high resolution local planning component of a hierarchical planning system.
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CHAPTER I, INTRODUCTION

Autonomous robot navigation aims to identify a series of movements
that, when executed in a sequence, will translate the robot from a starting
position to a goal position. The search for this path is constrained by the
robot’s sensor information and kinematics. Ideally, the path is chosen to
minimize (or maximize) some criteria, such as energy expenditure. In highly
structured environments, such as those encountered by a manipulator arm on a
factory floor, an objective function can be found that describes the manifold
on which the arm is constrained in actuator space. In this case, however,
uncertainty about the world is limited. On the other hand, in unstructured
environments—particularly outdoor environments beyond the city streets and
paths of human infrastructure—there is not such high confidence a priori
knowledge about the relationship between the appearance of a scene and its
traversability.

Visual perception involves decoding 2D projections of 3D Cartesian
space as they are captured by a robot’s imaging sensors [1], [2]. These 2D
projections are said to exist in image space. Many approaches to path
planning in unstructured environments derive an obstacle vs. safe
representation of a scene—referred to as an occupancy grid—which is created
by projecting information from image space down onto the ground plane and
then inserting it into an X-Y Cartesian map [3], [4]. Path planning systems
have also used 3D occupancy grids to represent the world [5]. The A*

algorithm [6] (or some variant [7]—[9]) is then used to find a path through the
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occupancy grid between the robot’s position and the goal [3]. Work has also
been done to model the path planning problem with various types of potential
fields, as in [10] and [11], and as a hybrid of A* and potential fields, as in
[12].

There are a number of advantages to planning a mobile robot’s
movement in a Cartesian map. However, this representation is not ideal for
near-field planning—in order to maintain a map with a computationally
feasible search space, the world must be resampled at a non-native resolution.
Although there are some planners that maintain a higher resolution map for
local path planning, e.g. [13], We propose that the transformation onto the
Cartesian plane is superfluous.

To the best of our knowledge, planning and actuation in image space
has not been studied on a robotic platform for use in unstructured
environments. There are, however, examples of image based visual servoing
in semi-structured and structured environments.

Autonomous highway driving algorithms [14]-[18] operate in a semi-
structured environment. Information from image features such as lane
markings, other automobiles, road color/texture, etc, allow these algorithms to
follow the road while avoiding obstacles.

A robotic arm on a factory floor can be controlled via a constraint
optimization function that maps the current field of view (FOV) to a reference
or target frame through a series of movements [19], [20]. This idea has been

extended to mobile robots in semi-structured environments in various forms
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[21]-[23]. For instance, View-Sequenced Route Representation (VSRR) is a

mapless navigation technique that calculates the displacement between a
target image and the current FOV [24], [25]. This displacement is then
translated into steering commands.

Autonomous highway driving algorithms and VSRR type models
develop a control strategy as a function of the perceived scene. However, both
make assumptions about the information that is available to them from the
scene; for instance, the existence of lane markings or a clear view of a
predefined goal state, respectively. These may be reasonable constraints in
structured or semi-structured environments; however, planning through
ambiguous terrain renders them infeasible.

The task that we are concerned with involves not only identifying
traversable terrain from non-traversable terrain, but also finding and staying
on a path to the goal. Specifically, the best path to the goal given one or more
predefined optimality constraints and the current information about the world.
We present an approach to path planning that allows local path search to take
place directly in the image plane, preserving the flexibility of the occupancy
grid paradigm while avoiding the corresponding transformation distortion
induced by the projection into a Cartesian coordinate system. In this scheme, a
real-world GPS coordinate is projected into image space as the goal. Next, a
variant of A* is used directly in image space to identify an optimal path to the
goal. Finally, robot servoing in the real world is accomplished via the image

space path that is found by A*. Special attention must be placed on the run-



time complexity of the system to allow the robot a suitable reaction time.

The basic image based planning system is called the Image Planner,
and is introduced in Chapter III. The Image Planner lacks memory of the
world and, therefore, planning can quickly degenerate into an infinite loop of
the form: move away from the goal to avoid an obstacle, and then move back
toward the goal (and thus the obstacle), after the obstacle’s existence has been
forgotten. These limitations are addressed with a series of extensions to the
Image Planner. The Cylindrical Planner, introduced in Section IV-A, is
created by augmenting the rotational memory of the Image Planner to include
the world beyond its FOV. A hybrid Hierarchical Planner, introduced in
Section IV-B, combines the strengths of a local Image Planner with those of a
global Cartesian planner. Experiments are presented in Chapter V and a

discussion of the results is presented in Chapter VI.



CHAPTER II, EXPERIMENTAL APPARATUS

Figure 1. The DARPA LAGR Robotic Platform.

The mobile robot platform used for this work is provided in
conjunction with the DARPA Learning Applied to Ground Robotics (LAGR)
program. It measures roughly 1.2m x .8m x 1.2m. Its sensors include: two
forward facing Point Grey BumbleBee 2 stereo camera pairs, a Garmin GPS
receiver, a magnetic compass, and wheel odometers. There are also two
forward facing infrared sensors and a front bumper sensor. The computational
units include: one computer dedicated to each of the two stereo camera pairs,
a third for the planning system, and a fourth that acts as a servo controller.

The stereo camera pairs are used to compute stereo disparity
information, as well as color and texture data. The disparity information is
accurate to approximately 15 meters, while color and texture data do not

suffer from this limitation. The infrared sensors have a range of approximately
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1 meter and are used for passive obstacle detection and avoidance—that is, the
robot is decelerated if the infrared sensors detect an obstacle, however,
information from the infrared sensors is not placed into the cost map.
Translation and rotation are achieved via two independently driven
front wheels. The wheels are located on either side of the vertical axis that
passes through the midpoint of the sensor mast, thus rotation around the mast
axis is achieved by driving the wheels in opposite directions at the same

speed.



CHAPTER 111, THE IMAGE PLANNER

Section A, Occupancy Grids and Cost Functions

Let R denote the 3D Cartesian real-world space. A primary goal of this
work is to achieve navigation through R toward a goal via paths found in
image space. The robot perceives R as a stereo disparity image S, provided by
a pair of stereo CCD cameras. The idea is to build an occupancy grid O in
image space based on S, and then find the path P that minimizes a
quantity W that is analogous to mechanical work (i.e. force multiplied by
distance). See Figure 2 for an example of such a path. Because any path found
in O is a projection of some path existing in R, it is possible to navigate
through R using P"™. This can be done directly, or via a projection of

PPl from image space into R.

Occupancy Grid, O Corresponding Black and White Image

Row
Rowe

1 w2 e
Colurmn Colurmn

Figure 2. A path through O from the robot’s position to a goal in the
far-field—Ilight to dark corresponds to low to high cost (left). The path
projected into a black and white image of the scene (right).

S is organized in an h by w Cartesian grid based on the camera's

physical pixel layout. The traversability of R is defined with the occupancy



grid O:

; (D

_ ¢ flat
Sn,m Sn,m

Oy =1(S,0)=

where n = 1...h and m = 1...w. Note that n = 1 and m = 1 correspond to the

top row and left most column of O, respectively. §, ,, is the disparity of pixel

(n, m) in the scene at time ¢ and S ,{Zn‘i’ is the nominal disparity of a flat ground

plane R™ The goal R,,q 1s defined by a GPS coordinate in R. R,y 1s mapped
into O as Ogoq, assuming that both R,., and the robot exist on R™ The
robot’s starting location in O is defined Oy, = Oj,, 2. The traversability values
stored in O are interpreted as forces F that impede robot progress, and the
planning system searches for paths through O that minimize the amount of

work W, that must be exerted to reach O from Oy

W, = LO“’“’F(P)dP )

start

where dP is the differential of position along P. O,y and Oy, are nodes in O
that anchor the endpoints of P. P contains IIPIl connected subsections i in O,
each starting at the center of a grid location O, and terminating at O,, ,,, one of
the 8-connected neighbors of O;. Therefore, the work required to traverse P

is found by the summation of work over its subsections.

Wp=) Wi=Y FD,

VieP Vie P s (3)
where W; is the work required to navigate path subsection i, F; is the force that
impedes robot progress along i, and D; is the length of i (i.e. the distance

between Oj and O, ). In order to find the optimal path, P timal o version of

the A* algorithm has been implemented that uses W as its cost function. The
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path returned by A* will have W = Wi, where Wy, is the minimum amount

of work required to reach the goal.

Wmin = Z FtDl

Vie porimal 4)

The estimated cost that is used for A* is distance multiplied by one

unit of force. In order to maintain the constraints of A*, force values must be

scaled between 1 and some number greater than 1 to impose a positive

minimum force that is at least as great as the estimated cost for flat-ground
traversal:

F,=1+c,,0 )

scale™~" n,m
Cscale 18 @ scaling factor that controls the ratio between the cost of flat ground
traversal and the maximum cost of traversal. For example, scaling F; to have
the range [1,5] causes flat ground traversal to be relatively more expensive
than scaling F; to have the range [1, 50]. In practice, we scale F; to have the
range [1 10].

optimal

Any metric used to calculate P must account for the fact that
paths found in O will determine navigation through R. Thus, care must be

taken when choosing a distance metric D;. In the next section, three possible

distance functions for D; are described.

Section B, Distance Metrics
The most straightforward method for calculating D;, the length of a
path segment in image space, is to project the endpoints of path segment i

from O into R, with the help of S, and then use the standard Euclidian distance
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metric in 3-space. Let this distance be called D/

Although this metric seems very appropriate, a problem arises when
the goal is projected into a high cost region (i.e. an obstacle). The optimal path
often involves a traversal directly through the obstacle. This is due to the fact
that, as far as the planner is concerned, the goal exists within the high cost
region of O and not behind the obstacle in R. For instance, if a tree is located
between the robot and a goal, then it will appear in O as if the goal has been
projected onto the front of the tree (Figure 3). Thus, the shortest path to the

goal appears to require climbing the tree. This phenomenon is a consequence
of the two dimensional nature of image space, and as a result, Dl.R is not a

suitable distance metric for use in image space.

image plane

Rﬁ@@us D

R

Figure 3, D is used to find a path in O that is then projected back

goal

into R. The goal appears to be on the front of the tree; therefore, the
shortest path to the goal involves going up into the tree.

DX" aims to correct for the problems of D by defining the length of

i to be the Cartesian distance between t; and 1,, the endpoints of i projected

from the camera through the image plane and onto R™—refer to Figure 4.



11

Hfacus

Hﬂar

fiat
Rtocus

Figure 4. Calculation of DiRﬂw . Rpocus 1s the focal point of the robot’s
camera array. T; and 1, are the endpoints of i projected onto R™.

Let & and & be the vectors that travel from the base of the robot R/

focus

to t; and 1, respectively. DiRﬂw is calculated as follows:

D" = \/ d,—d,) + 4d,dzsin2(%J : (6)

where d; and d, are the magnitudes of ¢, and &, respectively, and v is the

angle between &, and &,. Equations for d and y are now derived.

: 3
Harizon v @

il . L ~ flat
Toenter,center ncenter e I dg — Rtacus
d L dn.center, 1
|

c

Figure 5. Quantities used in the calculations of d and y.
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Assume that the robot is on R™ at R and that its FOV is oriented

focus
such that the center pixel in the image is below the horizon (Figure 5). The
angle of the vertical field of view is denoted 6, while the angle of the camera’s
FOV parallel to R is denoted Ohorizontal- Let Ryp,cus be the focus of the camera

in R, and let 1y be the first point on R™ that is visible in the camera’s FOV.

Let ¢ be the angle that is formed between o, Rjpeus, and R . Let V be the

focus
plane that contains 1y and is parallel to the image plane. y is the unit vector
associated with the vertical length of a pixel in the image plane, and u is the
projection of y through Ry, onto V in R. geenre{n) is a function that maps
pixels’ centers from the center column of the image plane onto points on V
contained in R. gc.n.r(n) 1s a function that maps pixels’ centers from the center

column of the image plane onto points on ™. Note that

Co (M _Isl
To = G center [h 2 = 8 center h 2 . (7)

Let a be the vector between Rycus and geene(h/2) and let b be the vector

between Ryycus and Geenrer(n). p is the angle between a and b

where / is the number of rows in O and

d +d,
la] = cos(o) d cos(c). 9)

d. is the measured distance from Tty t0 gcener(h/2), dy is the measured distance
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from R’ to 10, and o is the angle between a and R

focus
o=tan"'(d, /(d, +d,)) (10)

flat

ocus

where d, is the measured distance between R: and Rp,cus. dnyp 18 the

distance between R and 8center(n), and is calculated:

focus

_ R sin(z/2—p) .
oo n’sin(n/z—ﬁ+p)'d°’ =

where f is the angle between V and R
p=rl2-0, (12)

and the magnitude of u is calculated by:

o] = 2%5in(o). (13)

The inverse function to (11) is given by

(dn,w/2 —d, )Sin(tanil (dv /dn,w/2)) +l , (14)

" _||u||sin(7t/2—tan*1(dv/dn,w,2)+c7) 2

If the image distortion caused by a rotation of 6 /2 can be ignored, e.g.

horizontal

if 6 /2 is small such that tan(0 /2)=sin(6 /2), or the

horizontal horizontal horizontal
camera surface is curved such that the distance from the focus to the sensor
array is constant, then

d =d

n,m nw/2°* (15)
Let y be the angular distance in ™ associated with the R™ projection

of the endpoints of i. If the endpoints of i exist in columns m; and m, of O,

then given (15)



l// — |m2 — ml ghoriwntal , (16)
w

where w is the number of columns in O.
Note that the assumptions of (15) allow d to be calculated as a function
of grid row (n or j) and four intrinsic values associated with the robotic system

in general. Likewise, y is dependent on the difference between two grid

. . . . flat
columns Im-kl and two intrinsic values. Thus, the calculation of DiR can be

performed offline, once for each combination of n, j, and |Im-kl, and stored for

later use in a three dimensional look-up table.

image plane
flat
R

D

R focus i
o

goal

Figure 6. D] ™ is used to find a path in O that is then projected into

R™ The DiRﬂm distance required to reach the goal by going around the

base of the tree is about the same as the distance required to reach the
goal by going up the trunk of the tree. The optimal path avoids the
trunk of the tree if the force values created by the tree are slightly
higher than those of the neighboring ground.

By projecting i all the way down to R™, the D¥"" distance required to

go up the front of the tree is the same as the distance required to reach the goal
by traversing along R™. As a result, the distance required to reach the goal by

going just to the side of the trunk is about the same as going along (i.e. up) the
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trunk (Figure 6). Paths chosen to minimize W calculated with D,.Rﬂw avoid the

tree climbing problem because, as long as the F; values associated with the
tree are slightly greater than those associated with unimpeded terrain, the path

up the tree will be avoided in favor of the path directly next to the tree.

Even though both the D path and the D*" path initially terminate at

the same goal—apparently in the middle of the tree. The DiRﬂm path is more

likely than the D path to take the robot around the base of the tree. Once this

has happened, the tree will no longer obscure the goal and the goal will no

longer appear to be in the tree.
Dio, the third distance metric evaluated, is simply the L? norm in 0,

assuming that horizontal and vertical neighbors are spaced unit length apart.
The A* search algorithm often computes the actual cost of moving from a
given grid location to one of its neighbors. A slight speed increase is achieved
by noting that the distance between any two neighboring locations will always
be one of two values, depending on if the movement is diagonal, or strictly
horizontal or vertical.

1 j=n*l
D? = (= j¥ +(m—k} =1 1 k=m*1 (17)
V2 j=ntlLk=m*l

This simplification is not possible for the estimated cost step of A*, which

will generally require the standard computation of the L? norm. The

calculation of D’ forgoes any projections from image space into Cartesian
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space, allowing D! to be calculated relatively easily compared to D" "

Section C, Image Space Occupancy Grid Preprocessing
Subsection 1, Horizontal Obstacle Dilation

The A* search algorithm finds a path to the goal that minimizes the
work expenditure as a function of both the distance traveled and the difficulty
of travel. However, this model accounts for neither the physical extension of
the robot, nor its ability to rotate in place around its central axis. As suggested
by [4], [13], and [26], the width of obstacles in the occupancy grid are
increased as a function of robot width 4, allowing the robot to be treated as a
point during path search. Note that the apparent width of an obstacle in O is
related to the distance between the robot and the obstacle in R. This
relationship can be approximated by assuming that obstacles exist on R™,
With this assumption, the distance to an obstacle is d,, ,, and obstacle dilation
becomes a function of n that can be calculated offline.

0,,, =max(0,,..) (18)

n

where dilation width £ is an integer such that 1 < (m + k) <w and

LW Al2+e¢ <k < W Al2+¢€ (19)
ehorizonml dn,m ellorizontal dn,m

where 0p,,iz0ma has the same definition as in III-B, and ¢ is the minimum

clearance allowed between the robot and an obstacle. This assumes that each
row in O represents an approximately equal angle of Gj,.iz0nsai-

It was found that linear approximations to k performed well in
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practice. Such an approximation is calculated as a linear function of grid row:
—max{l (11 K ) K SR (1= W) (20)
where nyu; and  Cepansion are constants. ng., is the row at which
Dl.Rﬂm =A/2+¢€ between the two neighboring grid locations (ny.,;, m) and
(Rgtarr, m+1). In other words, ng.; 1S the row in O for which the width of a
single pixel contains as much D,.Rﬂm distance as one half of the robot width

plus the minimum obstacle clearance. If the robot is placed in the center of a
hallway of width A+2¢, such that the center of the robot’s FOV is parallel to
the two walls of the hallway, then the slope factor, c.pansion. 1S tuned so that
the dilated left and right boundaries of the hallway barley touch on the bottom

row of O.

Subsection 2, Vertical Obstacle Dilation

The assumption in (19) that obstacles exist on R™ is only valid for
portions of obstacles that are in direct contact with the ground plane (i.e. their
bases). In many environments navigation around the base of an obstacle is
sufficient to avoid collision, but this is not generally the case. For instance,
consider the case of an obstacle that increases in radius as a function of height.
The factor ¢ can be increased to address this discrepancy; however this is not a
robust solution because each specific value of ¢ will only work for a subset of
all obstacles. A better (although more time consuming) solution is to force an
obstacle’s width on R™ to be indicative of the maximum width of that

obstacle that presents a navigational hazard to the robot. This can be achieved
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by performing a vertical dilation to propagate a given obstacle’s width

information down to its base before the horizontal dilation occurs. In other
words, setting the width of the obstacle’s base to be equal to the obstacle’s
maximum width, in order to ensure that navigation around the base is always
sufficient to avoid collision with the obstacle.

The vertical length of the dilation must be a function of how far a
given point is away from the robot (note that this is also a function of
disparity). This is because the obstacle that generates the cost information
located at a particular row of O may exist at an infinite number of elevation
and distance combinations. The vertical length of the dilation should reflect
the robot’s height, as perceived in O, at the distance that the obstacle is
detected. Additionally, if the robot can safely travel under an obstacle, then it
does not make sense to increase the cost of the area under the obstacle. A

vertical length dilation equation is now derived.

flat
Rfocus

Figure 7, Quantities used to calculate vertical length dilation.
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Let Rppeuss RI" ., h, n,m, d,, a,b,u, 0,0, p,and ¢ be defined as they

focus >

were in III-B and Figure 5. Note that the angle between a and the vector that

travels from Ry, to R™ can be expressed as:

focus
0+0/2=m/2-0 21)

Let R,0ins be a point in R that generates disparity information, S,in, that is

perceived by the camera. Let p, be the height of R,;,; above the ground plane,

and let(S,,,,,) be the distance from Ry,c.s t0 Rpoins as a function of Sy,

point

C

camera (22)

ﬂ(Spoint) = S

point

where C.gmerq 15 calculated by multiplying the baseline of the stereo camera
array by the focal length of the cameras. Note that c.gmer, 1S @ constant
associated with the stereo pair. Let £ be the angle between b and the vector

flat

focus *

that travels from Ry, to R
L =nl2-0-p (23)
p,=d,—5(S,, )cos(<,) (24)

Dilation should extend from O,y down to O; ) where j is given by:

j = er tan| t/2—0 — arctan[ 19(5""" )Sin (4" )J + E“ (25)
Ju d 2

Note that the vertical length dilation should only be performed for O, », if the

v

corresponding p, is greater than O and less than the height of the robot.

A separate dilation calculation is required for each combination of grid
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row and disparity encountered by the system. If the computation of j is too
time consuming, then a speed increase can be achieved via a pre-computed

two dimensional look-up table of arbitrary precision.

Subsection 3, Rotation and Horizon Considerations
O is preprocessed to enable rotation around the central axis of the
robot by setting Oy, = 0. The horizon is assumed to be generated from the

ground plane R at infinity, and pixels above the horizon are ignored in O.

Note that this is only necessary if the distance metric D’ is being used

because DiRﬂm mandates that the cost of going above the horizon line is

infinite. Initially, we believed that allowing sky traversal would provide the
system with a method for dealing with navigation behind large obstacles. In
practice, however, it was found that if the environment became sufficiently
obstacle ridden, then the cheapest path to the goal nearly always traversed
some portion of the sky. In extreme cases, the robot moved away from the
goal indefinitely. For example, if the robot was not facing in the direction of
the goal and a path through the sky induced the robot to move away from the
goal, then the goal would appear to approach the horizon from the robot’s
point of view. Thus, after the movement, the path through the sky would

appear even more desirable.

Section D, Using an Image Space Path for Navigation

Servoing is accomplished by steering toward a target location
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Prarget = PpTarge,mrarger 10cated some predetermined distance along P in O. This
is either achieved by mapping P;4 e into R™ from O and then steering toward
the resulting location, or by implementing the servoing function directly in O.
In the experiments described in Chapter V, the latter method is used to
calculate steering angle and speed where:

maxSpeed (h - nTarget)

speed =
\/(mTarget - w/2)2 +(h- nTarget)2

(26)

(mTarget —w/2)
w .

steering Angle = Orvricona (27)

There is only a rotational component to movement if Prurger = Op g2,
and there is only a translational component to movement if Pyrger = Oy
Otherwise, movement consists of a combination of translation and rotation. It
is defined that the robot has reached the goal when Py4e; = O, 2, Or when the

goal cannot be projected into O because Ry, 1s too close to the robot.
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CHAPTER 1V, EXTENSIONS TO THE IMAGE PLANNER

Section A, The Cylindrical Planner

The Cylindrical Planner is created by adding additional elements to O
that allow for storage of information that has passed outside of the robot's
rotational field of view in R. The model uses a cylindrical representation of O
that can be thought of as a radialy panoramic mosaic of what the robot has
experienced. Radialy panoramic mosaics have been used in the past for
landmark detection and pose estimation [25], [27], [28]. For implementation
purposes, O is represented as a simple 2D grid C, with the added requirement
that C,; is considered a neighbor of C;,, and C;; is considered a neighbor of
C,p, for all rows n and j in C, where j = {n+1,n,n-1} and p is the number of

columns in C. Information is added to C by:

C

n,m+f((p) =

_ Qflat
Sn,m Sn,m *

(28)

That is, information destined for storage in C is offset horizontally by a

function of ¢, robot yaw relative to North. f{¢) is calculated as:

flok Mp((g—;ﬂ) }nod p J : (29)

In other words, stereo disparity data is placed into C as a function of the
compass direction that the robot is facing when the image is captured. This
implies that the cardinal directions South, West, North, East, and South, will

be mapped from R into the following columns of C: 0,|p/4 |, |p/2], |3p/4],

and p, respectively.

flp) 1s calculated ignoring the distortion that is caused by
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approximating multiple planes as a cylinder, and ignoring the fact that the
image plane is not parallel to the cylinder’s longitudinal axis. If the FOV is
such that these distortions cannot be ignored, then two possible solutions
exist: either a projection can be used that reconstructs the image plane
correctly on the cylinder, or the FOV can be restricted in width such that the
distortion is no longer a problem. For the LAGR vehicle, a linear shearing
transformation is found to be effective at increasing the rotational accuracy
the cylinder. The transformation involves increasing the row in C that a given
camera pixel belongs to, as a function of the distance (in number of columns)
that the pixel is located away from the center of the robot’s FOV. Note that
this is only an approximation to the true transformation that would place
camera information perfectly into the cylinder, however the linear
transformation is fast, and hence desirable for the online application.

The A* search algorithm is modified for use on C by allowing path
sections to exist across the South-South border, and by setting the robot’s
location in C according to its pose: Copor = Ch - The goal is projected into C

based on the compass heading of the goal relative to the robot and the distance

between R7“ and the goal on R™(14), derived in III-B, defines this

focus

projection. Figure 8 depicts a typical search through C.
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Figure 8. A path from the robot position to a goal located at the base
of a tree through the Cylindrical Planner’s occupancy grid. Light to
dark corresponds to low to high cost, respectively.

A function is now derived that describes how elements outside of the

FOV in C should be updated for any combination of translation and rotation

that the robot executes on R™.

Figure 9, Quantities used to compute the updating function for C.

Let point R,.i» be a point in R that generates the cost information
stored at row n and column m of C when the robot is located at R,,p,,. If the
robot is moved to a new location, R’ opor # Rrobors then Ry, Will subsequently
generate the cost information stored at row n’ and column m’ of the new

cylinder C’. Note that the C, ,, may not be equal to C’,,,>, n may not be equal
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to n’, and m may not be equal to m’. This is because the directions and
distances to Ry, from R,op,; and R’,p,; may not be the same at the new
location as they were at the old location.

When the FOV is not 27, as is generally the case, this updating can be

b

simulated by solving for »’, m’, and C’,,, given n, m, C,,, and the
movement of the robot between R,,p,; and R .50 Because C is a SWNES
mosaic (and assuming that any change in height can be ignored) the only
components of movement that affect these calculations are AE and AN, the
robot’s relative displacement in the East and North directions, respectively.

Let h, llall, llall, p, and £ have the same definitions as in (8) through (15) and

Figure 5. Let T be the robot’s translation on R™.

T =+JAN? + AE? (30)

Let ¢ and ¢’ be the radial locations of R’,p; and R,.per relative to

North, from the vantage point of R,,p,; and R’,,p0r, r€SpeEctively.
¢ =arctan, (AE,AN), (31)
¢'=arctan, (~ AE,~AN), (32)

Let R™ be the point on R directly below Ry, and let x4 be the

point
angle on R between the vector from Robor t0 R opor and the vector from

Rrobot to Rﬂm

point

2n(m—1
HZL_
p

T—G, (33)

where p is the number of columns in C. Let d, be the distance between R,

and R’  and let d’, be the distance between R’,op,; and R/

point ? point *
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ch=0@m%m{ +p- ﬁ} ;W”w{ +p—ﬂj (34)
=T +d’ -2d,T cos(u) (35)

The function ®(S) is defined in (22). ®(S,, ) is the depth associated with

pixel (n,m) when the robot is at R, and ﬂ(S,fjf) is the depth associated with

the same pixel when the robot exists on a flat plane. d,,, is defined in (15),
and is a distance along R™ associated with pixel (n,m) when the robot is at
R, op0r- Note that the assumptions of (15) are valid because C is cylindrical. n’

and m’ are computed as follows:

Manﬁ__+mn 4 (36)
2"l d,,d,

m'=L((r +¢'-p')mod 27 )+1 (37)
27

and then rounded to the nearest integer. x’ is the angle on R™ between the

vector from R’,ppor t0 Ryopor and the vector from R’,opo; to R™ . The sine and

point *

cosine of u’ can be calculated as follows:

sin(u')= [ sm(,u)] (38)

T2_d2+d|2
cos(u')=—L—1L 39
s(u) T (39)

Note that the relations ¢’ = arcsin(sin(¢”)) and ¢’ = arccos(cos(x”)) do not hold

over the range 0 <y’ < 2x. Therefore, 1" must be calculated as follows:
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'= arcsin(sin(u")) if cos(u')=0
p'=m —arcsin(sin(u'))  if cos(u')<0Asin(u')>0 (40)
u'=—rx —arcsin(sin(u')) if cos(u')<0Asin(u')<0

The use of 19(Sn’m) in (34) implies that a second cylinder Q, containing the

depth values associated with C, must either be maintained separately or

calculated from C:

= —_ Ceamera
Oun =08, )= (1)

Let Q and Q’ represent the depth value cylinder when the robot is located at
R,opor and R’ 501, Tespectively. Note that in practice it is easier to maintain Q
separately from C, instead of calculating it from C. However, if the latter
method is used, then the absolute value on the right hand side of (28) should
be relocated to (5), in order to insure that (41) is correct.

When 7=0 the updating functions for Q and C are defined respectively

0 =0 and C =C; otherwise, Q’ is populated by

' dvdp i 12
Q n',m' = d + d p° (42)

1 1
C“n'm':19_1 Q'n'm' = camera| ’ (43)
=00 )-c [Q ]

ol
n,m n,m

and C’ is populated by

O’ cannot be calculated if d’, is inside the cylinder, and thus below the
cylindrical field of view. In that case, n” will not exist as arow in Q’ or C’.
A strategy must be defined for dealing with what happens when one

obstacle is occluded by another during translation, in which case more than
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one point in Q may be mapped to Q’, . Generally, obstacles closer to the
robot represent more of a navigational hazard; therefore, it is advisable to
retain the minimum Q’,, value. As previously noted, it may be easier to

maintain Q instead of C. If this is done, then force values are calculated:

1 1

F=1+c_.c —
Qn,m Qn,m

i scale™ camara

(44)

Currently, it is computationally prohibitive to calculate this
transformation within the robot’s reaction time. Therefore, An alternative
memory-updating scheme is implemented by having C gradually forget
information outside of the robot’s FOV as a function of the distance that the

robot has traveled,

_ AE 2 2
Cv: Cv max 0, d_f()rger ( ) + (AN) , (45)

forget

where dj,q; 15 the distance required to erase all rotational memory in a single
update [26]. In this scheme, no translational updating takes place, and the
values in C outside of the FOV will decay toward zero. df,re; 1S manually
tuned to mimic the information loss observed in the translation scheme. Note

that d,,. 18 also a function of the rate at which (45) is applied.

Section B, The Hierarchical Planner
A Hierarchical Planner attempts to solve the path planning problem by
dividing it up into the parallel problems of global and local planning. The

local planner is charged with obstacle avoidance and navigation toward sub-
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goals. Meanwhile, the global planner concerns itself with a coarse
representation of the entire world and returns appropriate sub-goals to the
local planner. Hierarchical Planners have been used in a variety of robot path
planning schemes [29], [30]. For instance, [31] models the global world as a
graph of connected nodes in which each node acts as the local map. [13] also
models the global world as a graph of connected nodes, but views the local
world in top-down Cartesian space. In [32], both the local and global planners
are versions of the top-down occupancy grid model. In standard Hierarchical
Cartesian Planners, the local cost-map is high resolution, fixed in size, and
remains centered on the robot; the global cost-map maintains a lower
resolution, expands with exploration, and remains fixed to some global frame
of reference.

We implement a Hierarchical Planner that uses a top-down occupancy
grid and a Cylindrical Planner for its global and local planning components,
respectively. This configuration combines the local path planning strengths of
image based path planning—high resolution obstacle avoidance and
servoing—with the global strengths of the birds-eye view occupancy grid—
translational memory. Data is stored in the global planner’s occupancy grid, B,
as a projection of F onto R™ and the resolution of B is 50 centimeters. Path
planning through B is accomplished via a version of the work minimization
A* search algorithm (4), where D; is the Euclidean distance between grid
locations in B multiplied by the resolution of B. Sub-goals are chosen to be 10

meters away from the robot.
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CHAPTER V, EXPERIMENTS

The three implementations of image based planning systems,
described in sections III-A , IV-A, and IV-B, respectively, are compared to a
baseline top-down planner on three courses in unstructured outdoor
environments. The Baseline Planner has an occupancy grid granularity of 50

centimeters and is nearly identical to the global half of the Hierarchical
Planner. All three image based systems use the D! distance metric (described

in section III-B). Courses 1, 2, and 3 are depicted in Figures 10, 11, and 12,
respectively. The actual paths that the robot took are overlaid on a top-down
occupancy grid map of the environment. For completeness of map
information, all maps were generated independently of the test runs by
teleoperation. The granularity of each occupancy grid is 50 centimeters.
Course 1 is a simple course that consists of randomly placed obstacles with
radii varying from 10 centimeters to 1 meter. Courses 2 and 3 are similar to
Course 1, except that an obstacle of 10 meter girth is added on Course 2, and
Course 3 contains two adjoining obstacles each 1 meter wide and
approximately 30 and 10 meters long, respectively. Low to high cost is

represented by light to dark, respectively.
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Figure 11. Course 2: an obstacle of 10 meter girth.
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Figure 12. Course 3: two adjoining long thin obstacles.

A version of the Hierarchical Planner using the DiRﬂm distance metric

was also tested on course 3. The rout taken by this system is depicted in

Figure 13.
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" .
[ —— Heraricn -
| .
= | - il
L Start

20

Morth {m}
o

East {m)

. flat . .
Figure 13. D/ distance metric performance on Course 3.
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CHAPTER VI, DISCUSSION AND RESULTS

Path planning for robot navigation is a real-time system in which the
robot must be able to observe the world and react quickly enough to guarantee
safety and reliability. At the robot’s minimum speed (approximately 0.125
m/s), robust navigation requires that the robot perceive the world and react at
least every quarter meter, or 0.5 Hz. Ideally, it is desirable for the robot to
translate at a rate of 0.5 m/s or greater, which means the robot must plan at
least 2 Hz. Improving frame-rate beyond this is not unreasonable given state
of the art CPUs. Nonetheless, care is taken to limit the time complexity of the

algorithms, particularly the distance calculations. As noted in section III-B,
DiRﬂm can be calculated off-line, thus reducing the online distance calculation

to a table-lookup.
In practice, it was found that the D,.Rﬂw distance metric causes the path

to be extremely sensitive to noise. When noise occurs in an otherwise

traversable area, it creates a pseudo-obstacle that the planning system attempts
to avoid like any other high cost region. DiRﬂm mandates that the cost

associated with traveling between neighboring grid locations decreases as a
function of occupancy grid row (Figure 14). Thus, the least expensive path
around an obstacle located in the far field will try to avoid the obstacle in the
near field—often by an immediate rotation. This would not be a problem in
the absence of noise. However, because pseudo-obstacles pop in and out of
existence, erratic behavior is induced by the planning system’s continuous

attempts to avoid new pseudo-obstacles (i.e. with immediate rotation after
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immediate rotation). Figures 12 and 13 show, respectively, the performance of
the Hierarchical Planner using the D and DiRﬂw metrics on Course 3. The

route taken by the hierarchical planning system in Figure 12 is much smoother

than the one in Figure 13.
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Figure 14. Distortion Ratio as a function of occupancy grid row
(percentage from bottom of image to horizon), where Distortion Ratio

is DiRﬂm for vertical and horizontal neighbors divided by DiRﬂm for the
bottom most vertical and horizontal neighbors, respectively (top). Note
that this is proportional to DiRﬂw / DP . Close up of distortion ratio
(bottom).

D? tends to distort R™ distance, especially in the far field (Figure
14). However, D works well in practice. By defining the distance between
neighbors to be invariant of grid location, it avoids the noise induced near-
field path corrections that were observed with D/ " _This is because paths are

penalized equally for near or far field detours, so the path is free to follow the
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geodesic around an obstacle or pseudo-obstacle without making a significant
and immediate correction. Also, because the range of our stereo sensors is
effectively 15 meters, severe far-field distance distortion is somewhat
irrelevant. Note that in Figure 10 the distortion ratio is less than 2 for

approximately one third of the occupancy grid, where Distortion Ratio is
defined to be D,.Rﬂm for vertical and horizontal neighbors divided by DiRﬂm for
the bottom most vertical and horizontal neighbors, respectively. Because
DY is always 1 for horizontal and vertical neighbors, this is also proportional
to DX /D .

The experiments illustrated that the basic Image Planner is able to
navigate through simple courses, such as Course 1; however, it is not a robust
planning system. For instance, when Ry, is not in the robot's FOV it cannot
be mapped into O. This will happen if the robot starts in such an orientation, is
close to the goal, or has rotated away from R, in order to avoid an obstacle.
Consequently, the Image Planner fails unless some predefined course of
action is hard-coded into the system. The first case is solved by requiring the
robot to rotate in the direction of the goal upon start-up. The second case can
be ignored because it will only happen once the robot has completed its task.
The final case is non-trivial and plans of action must involve movement
containing both a translational component and a rotational component.

Without both translation and rotation, the robot risks never finding a
path to the goal. Purely forward movement will carry the robot away from the

goal indefinitely, whereas movement in the reverse direction risks obstacle
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collision. Pure rotation may induce oscillatory behavior, as the robot
alternately rotates away from the obstacle and then back toward the goal after
forgetting that the obstacle exists. The Image Planner was observed to display
this behavior on Courses 2 and 3, Figures 11 and 12, respectively—note that
each test was manually aborted after the robot oscillated for two minutes. A
naive procedure that translates some distance before allowing rotation in the
direction of the goal may perturb the system enough to overcome this
condition. However, this does not address the deeper problem at the heart of
rotational-oscillatory behavior—namely, the lack of rotational memory. The
rotational memory of the Cylindrical Planner allows it to remember the
obstacle's existence, even when the obstacle is outside the robot’s field of
view. Note that in Figure 11 the Cylindrical Planner navigates around the
obstacle to the goal.

The Cylindrical Planner was able to find the goal in all three tests.
However, on Course 3 (Figure 12) it was the only planning system that opted
to travel around the lengthier of the two obstacles. We speculate that this
behavior would have degenerated into translational oscillation if the obstacle
had been longer. Consider the case of Figure 15, top. A goal is placed directly
North of the center of a long thin wall that runs East to West (e.g. the length
of the wall is 1km and the width of the wall is 1m). The robot starts South of
the center of the wall. At first, given the information in C, it will appear
possible to navigate around the wall in either direction. However, as the robot

moves toward one end of the wall, the goal will appear to move toward the
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opposite end of the wall from the robot’s point of view (Figure 15, bottom).
Eventually, it will appear cheaper to reverse direction and attempt to reach the
goal by going around the opposite end of the wall. This will repeat each time

the robot travels a certain distance away from the goal in either direction.

=

==

JAT

TLZ-

VA

robot

5 w & ™ E 5
Aropot

Figure 15, Translational oscillation induced in the Cylindrical Planner by a
long thin wall. The initial path around the wall (top), and the path at a later
time (bottom).

The only way to avoid this problem is to introduce some form of
global translational memory, such as a global 3D or 2D top-down Cartesian
Planner. Local versions of these planners do not suffice—they are, by
definition, only concerned with portions of the world near the robot and will
always be vulnerable to translational oscillation induced by obstacles larger
than their translational memory. The Hierarchical Planner, on the other hand,
will eventually find a way around a large obstacle—if one exists—with the
help of its global Cartesian Planner. However, solutions can still be
suboptimal. For example, the robot may backtrack many times as it explores

for a way around the wall [33]. This is observed in Figure 12 for both the
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Baseline Planner and the Hierarchical Planner. This suboptimal behavior can
be described as translational quasi-oscillatory, and is related to (but not
identical to) the translational oscillatory problem previously addressed. Any
planning system that must make decisions based on limited information is
susceptible to quasi-oscillatory behavior because any currently optimal
solution may change as new information is discovered. Work has been done
on this complex global planning phenomenon by [34].

If the system has sufficient prior knowledge of the domain (e.g. a
perfect map) then the planner is able to make piece-wise optimal decisions
that form a globally optimal decision. Highly structured environments, for
instance those encountered by autonomous highway driving algorithms, may
contain sufficient information to use a local planner in a global setting.
Similarly, the Cylindrical Planner is equipped to navigate through
environments similar to Courses 1 and 2 without the help of the Hierarchical

Planner.
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CHAPTER VII, FUTURE WORK

The high fidelity occupancy grid used in image space planning
provides a natural framework to include more sophisticated models about the
traversability of terrain. A natural extension to this work is to combine color
and texture models with stereo information to incorporate more environmental
knowledge, and allow for more robust path planning.

One unaddressed limitation of the Cylindrical planning system is its
inability to plan behind obstacles that the robot cannot see over. This is a
direct result of the fact that the Image Planner only has the ability to store
complete information about two of the three dimensions that it uses.
Attempting to solve this problem by allowing sky traversal caused failure in
certain circumstances. A similar idea that may work is to artificially place low
cost regions at specific places in the map. For instance, setting the force
associated with a grid location to one if it happens to be in the same row that
the goal is projected into, and within a certain number of columns away from
the goal. This is similar to an idea from Applied Perception, Inc., a fellow
LAGR participant, who suggested allowing easy horizontal movement

everywhere in O, in order to reflect the fact that the robot may be able to go

behind things in the cost map. Interestingly, the D,.Rﬂw distance required to

move to a horizontal neighbors is always much less than the DiRﬂm distance

required to move to a vertical neighbor, given the same starting location. This

suggests that if the noise observed in our system could be reduced, then the

flat

DF" metric may be a principled way to account for the possibility of

i
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traversing behind obstacles.

It is worth noting that humans, given a similar world view, are able to
use logic to reason about such things. For instance, they know that they can
probably traverse horizontally through a forest, but that they probably will not
be able to travel directly through a cliff face or a cement wall. Hence, It may
be possible to use supervised or simi-supervised machine learning to build
traversibility models of scenes in order to give the robot a similar knowledge
base.

If a faster way of updating the part of the cylinder that is outside of the
robot’s FOV could be implemented, then it would allow the cost map of the
cylindrical model to be more robust during translation. It is also possible that
approximations to the full translational updating scheme could provide more
useful information than what is currently provided by exponentially forgetting
the part of the map that is outside of the robot’s FOV. Several possible
schemes include: assuming that all obstacles lie on two walls that are parallel
to the direction of robot translation, one on either side of the robot and both a
fixed distance away from the robot; adding an additional two walls, one in
front of the robot and another behind it, that are perpendicular to the first two
walls; and performing the entire translation at a limited disparity granularity—
thus allowing the offline pre-computation of updated cost values and their

corresponding locations.
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CHAPTER VIII, CONCLUSIONS

We have demonstrated the efficacy of using image based path
planning. However, We have also discovered that any robust path-planning
algorithm must address two environmental scenarios: those that lead to
rotational oscillation and those that lead to translational oscillation. The Image
Planner is susceptible to both, a limitation not shared by the traditional top-
down Cartesian Planners. We address these situations with a series of
extensions to the Image Planner. By augmenting the memory of the Image
Planner to include the world beyond the FOV, the Cylindrical Planner is
capable of overcoming rotational oscillations and reducing translational
oscillations. In general, the translational oscillation problem can only be
solved by a planner that maintains global translational memory. Although
planning in image space does not displace the Cartesian Planner, it does
relegate it to the more aptly suited function of global planning. Local planning
in image space is robust, and provides a simple framework for maintaining a
high resolution world-view. A Hierarchical Planner combines the strengths of
both systems and is able to plan a more natural path, which can then be
executed more fluidly.

The end goal of these efforts is a principled interaction between
Cylindrical and Cartesian path planning. This is the first such successful

framework, and sets the stage for future research efforts.
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