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 An approach to stereo based local path planning in unstructured 

environments is presented. The approach differs from previous stereo based 

and image based planning systems (i.e. top-down occupancy grid planners, 

autonomous highway driving algorithms, and view-sequenced route 

representation), in that it uses specialized cost functions to find paths through 

an occupancy grid representation of the world directly in the image plane, and 

forgoes the standard projection of cost information from the image plane 

down onto a top-down 2D Cartesian cost map.  Three cost metrics for path 

selection in image space are discussed. A basic image based planning system 

is presented, and its susceptibility to rotational and translational oscillation is 

discussed. Two extensions to the basic system are presented that overcome 

these limitations—a cylindrical based image system and a hierarchical 

planning system. All three systems are implemented in an autonomous robot 

and are tested against a standard top-down 2D Cartesian planning system on 

three outdoor courses of varying difficulty. It was found that the basic image 

based planning system fails under certain conditions;  however, the cylindrical 

based system is well suited to the task of local path planning and for use as a 

high resolution local planning component of a hierarchical planning system.
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CHAPTER I, INTRODUCTION 

 Autonomous robot navigation aims to identify a series of movements 

that, when executed in a sequence, will translate the robot from a starting 

position to a goal position. The search for this path is constrained by the 

robot’s sensor information and kinematics. Ideally, the path is chosen to 

minimize (or maximize) some criteria, such as energy expenditure. In highly 

structured environments, such as those encountered by a manipulator arm on a 

factory floor, an objective function can be found that describes the manifold 

on which the arm is constrained in actuator space. In this case, however, 

uncertainty about the world is limited. On the other hand, in unstructured 

environments—particularly outdoor environments beyond the city streets and 

paths of human infrastructure—there is not such high confidence a priori 

knowledge about the relationship between the appearance of a scene and its 

traversability.  

 Visual perception involves decoding 2D projections of 3D Cartesian 

space as they are captured by a robot’s imaging sensors [1], [2]. These 2D 

projections are said to exist in image space. Many approaches to path 

planning in unstructured environments derive an obstacle vs. safe 

representation of a scene—referred to as an occupancy grid—which is created 

by projecting information from image space down onto the ground plane and 

then inserting it into an X-Y Cartesian map [3], [4]. Path planning systems 

have also used 3D occupancy grids to represent the world [5]. The A* 

algorithm [6] (or some variant [7]–[9]) is then used to find a path through the 
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occupancy grid between the robot’s position and the goal [3]. Work has also 

been done to model the path planning problem with various types of potential 

fields, as in [10] and [11], and as a hybrid of A* and potential fields, as in 

[12]. 

 There are a number of advantages to planning a mobile robot’s 

movement in a Cartesian map. However, this representation is not ideal for 

near-field planning—in order to maintain a map with a computationally 

feasible search space, the world must be resampled at a non-native resolution. 

Although there are some planners that maintain a higher resolution map for 

local path planning, e.g. [13], We propose that the transformation onto the 

Cartesian plane is superfluous. 

 To the best of our knowledge, planning and actuation in image space 

has not been studied on a robotic platform for use in unstructured 

environments. There are, however, examples of image based visual servoing 

in semi-structured and structured environments.  

 Autonomous highway driving algorithms [14]–[18] operate in a semi-

structured environment. Information from image features such as lane 

markings, other automobiles, road color/texture, etc, allow these algorithms to 

follow the road while avoiding obstacles.  

 A robotic arm on a factory floor can be controlled via a constraint 

optimization function that maps the current field of view (FOV) to a reference 

or target frame through a series of movements [19], [20]. This idea has been 

extended to mobile robots in semi-structured environments in various forms 
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[21]–[23]. For instance, View-Sequenced Route Representation (VSRR) is a 

mapless navigation technique that calculates the displacement between a 

target image and the current FOV [24], [25]. This displacement is then 

translated into steering commands.  

 Autonomous highway driving algorithms and VSRR type models 

develop a control strategy as a function of the perceived scene. However, both 

make assumptions about the information that is available to them from the 

scene; for instance, the existence of lane markings or a clear view of a 

predefined goal state, respectively. These may be reasonable constraints in 

structured or semi-structured environments; however, planning through 

ambiguous terrain renders them infeasible.  

 The task that we are concerned with involves not only identifying 

traversable terrain from non-traversable terrain, but also finding and staying 

on a path to the goal. Specifically, the best path to the goal given one or more 

predefined optimality constraints and the current information about the world. 

We present an approach to path planning that allows local path search to take 

place directly in the image plane, preserving the flexibility of the occupancy 

grid paradigm while avoiding the corresponding transformation distortion 

induced by the projection into a Cartesian coordinate system. In this scheme, a 

real-world GPS coordinate is projected into image space as the goal. Next, a 

variant of A* is used directly in image space to identify an optimal path to the 

goal. Finally, robot servoing in the real world is accomplished via the image 

space path that is found by A*. Special attention must be placed on the run-
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time complexity of the system to allow the robot a suitable reaction time.  

 The basic image based planning system is called the Image Planner, 

and is introduced in Chapter III. The Image Planner lacks memory of the 

world and, therefore, planning can quickly degenerate into an infinite loop of 

the form: move away from the goal to avoid an obstacle, and then move back 

toward the goal (and thus the obstacle), after the obstacle’s existence has been 

forgotten. These limitations are addressed with a series of extensions to the 

Image Planner. The Cylindrical Planner, introduced in Section IV-A, is 

created by augmenting the rotational memory of the Image Planner to include 

the world beyond its FOV. A hybrid Hierarchical Planner, introduced in 

Section IV-B, combines the strengths of a local Image Planner with those of a 

global Cartesian planner. Experiments are presented in Chapter V and a 

discussion of the results is presented in Chapter VI. 
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CHAPTER II, EXPERIMENTAL APPARATUS 

 

Figure 1.  The DARPA LAGR Robotic Platform. 

 

 The mobile robot platform used for this work is provided in 

conjunction with the DARPA Learning Applied to Ground Robotics (LAGR) 

program. It measures roughly 1.2m x .8m x 1.2m. Its sensors include: two 

forward facing Point Grey BumbleBee 2 stereo camera pairs, a Garmin GPS 

receiver, a magnetic compass, and wheel odometers. There are also two 

forward facing infrared sensors and a front bumper sensor. The computational 

units include: one computer dedicated to each of the two stereo camera pairs, 

a third for the planning system, and a fourth that acts as a servo controller. 

 The stereo camera pairs are used to compute stereo disparity 

information, as well as color and texture data. The disparity information is 

accurate to approximately 15 meters, while color and texture data do not 

suffer from this limitation. The infrared sensors have a range of approximately 
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1 meter and are used for passive obstacle detection and avoidance—that is, the 

robot is decelerated if the infrared sensors detect an obstacle, however, 

information from the infrared sensors is not placed into the cost map. 

 Translation and rotation are achieved via two independently driven 

front wheels. The wheels are located on either side of the vertical axis that 

passes through the midpoint of the sensor mast, thus rotation around the mast 

axis is achieved by driving the wheels in opposite directions at the same 

speed.    
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CHAPTER III, THE IMAGE PLANNER 

Section A, Occupancy Grids and Cost Functions 

 Let R denote the 3D Cartesian real-world space. A primary goal of this 

work is to achieve navigation through R toward a goal via paths found in 

image space. The robot perceives R as a stereo disparity image S, provided by 

a pair of stereo CCD cameras. The idea is to build an occupancy grid O in 

image space based on S, and then find the path P
optimal

 that minimizes a 

quantity W that is analogous to mechanical work (i.e. force multiplied by 

distance). See Figure 2 for an example of such a path. Because any path found 

in O is a projection of some path existing in R, it is possible to navigate 

through R using P
optimal

. This can be done directly, or via a projection of 

P
optimal

 from image space into R.  

 

 
Figure 2.  A path through O from the robot’s position to a goal in the 

far-field—light to dark corresponds to low to high cost (left). The path 

projected into a black and white image of the scene (right). 

 

 S is organized in an h by w Cartesian grid based on the camera's 

physical pixel layout. The traversability of R is defined with the occupancy 
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grid O: 

   ( ) flat

mn,mnmnmn SSSfO −== ,,, ,     (1) 

where n = 1…h and m = 1…w. Note that n = 1 and m = 1 correspond to the 

top row and left most column of O, respectively. mnS , is the disparity of pixel 

(n, m) in the scene at time t and flat

mn,S  is the nominal disparity of a flat ground 

plane R
flat

. The goal Rgoal is defined by a GPS coordinate in R. Rgoal is mapped 

into O as Ogoal, assuming that both
 
Rgoal and the robot exist on R

flat
. The 

robot’s starting location in O is defined Ostart A�Oh,w/2. The traversability values 

stored in O are interpreted as forces F that impede robot progress, and the 

planning system searches for paths through O that minimize the amount of 

work Wp that must be exerted to reach Ogoal from Ostart. 

    ( )∫=
goal

start

O

O
P dPPFW     (2) 

where dP is the differential of position along P. Ogoal and Ostart are nodes in O 

that anchor the endpoints of P. P contains ||P|| connected subsections i in O, 

each starting at the center of a grid location Oj,k and terminating at On,m, one of 

the 8-connected neighbors of Oj,k. Therefore, the work required to traverse P 

is found by the summation of work over its subsections. 

    
∑ ∑

∈∀ ∈∀

==
Pi Pi

iiiP DFWW

,    (3) 

where Wi is the work required to navigate path subsection i, Fi is the force that 

impedes robot progress along i, and Di is the length of i (i.e. the distance 

between Oj,k and On,m). In order to find the optimal path, P
optimal

, a version of 

the A* algorithm has been implemented that uses W as its cost function. The 
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path returned by A* will have W = Wmin, where Wmin is the minimum amount 

of work required to reach the goal. 

    

Wmin = FiDi

∀i∈P optimal

∑
    (4) 

 The estimated cost that is used for A* is distance multiplied by one 

unit of force. In order to maintain the constraints of A*, force values must be 

scaled between 1 and some number greater than 1 to impose a positive 

minimum force that is at least as great as the estimated cost for flat-ground 

traversal: 

       mnscalei OcF ,1+=     (5) 

cscale is a scaling factor that controls the ratio between the cost of flat ground 

traversal and the maximum cost of traversal. For example, scaling Fi to have 

the range [1,5] causes flat ground traversal to be relatively more expensive 

than scaling Fi to have the range [1, 50]. In practice, we scale Fi to have the 

range [1 10]. 

 Any metric used to calculate P
optimal

 must account for the fact that 

paths found in O will determine navigation through R. Thus, care must be 

taken when choosing a distance metric Di. In the next section, three possible 

distance functions for Di are described. 

 

Section B, Distance Metrics 

 The most straightforward method for calculating Di, the length of a 

path segment in image space, is to project the endpoints of path segment i 

from O into R, with the help of S, and then use the standard Euclidian distance 
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metric in 3-space. Let this distance be called R

iD . 

 Although this metric seems very appropriate, a problem arises when 

the goal is projected into a high cost region (i.e. an obstacle). The optimal path 

often involves a traversal directly through the obstacle. This is due to the fact 

that, as far as the planner is concerned, the goal exists within the high cost 

region of O and not behind the obstacle in R. For instance, if a tree is located 

between the robot and a goal, then it will appear in O as if the goal has been 

projected onto the front of the tree (Figure 3). Thus, the shortest path to the 

goal appears to require climbing the tree. This phenomenon is a consequence 

of the two dimensional nature of image space, and as a result, R

iD  is not a 

suitable distance metric for use in image space. 

 

 
Figure 3, R

iD  is used to find a path in O that is then projected back 

into R. The goal appears to be on the front of the tree; therefore, the 

shortest path to the goal involves going up into the tree. 

 

 

 
flat

R

iD aims to correct for the problems of R

iD  by defining the length of 

i to be� WKH�&DUWHVLDQ�GLVWDQFH�EHWZHHQ�21�DQG�22, the endpoints of i projected 

from the camera through the image plane and onto R
flat

—refer to Figure 4.  
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Figure 4.  Calculation of 
flat

R

iD . Rfocus is the focal point of the robot’s 

camerD�DUUD\��21�DQG�22 are the endpoints of i projected onto R
flat

.   

 

 Let �1 and �2 be the vectors that travel from the base of the robot 
flat

focusR  

WR�21�DQG�22, respectively. 
flat

R

iD  is calculated as follows: 

     ( ) 





−

2
sin4

2

2

2

21

ψ
dd+dd=D 1

flatR

i ,   (6) 

where d1 and d2 are the magnitudes of �1 and �2, respectively, and ψ is the 

angle between �1 and �2. Equations for d and ψ are now derived. 

 
Figure 5.  Quantities used in the calculations of d and %. 
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 Assume that the robot is on R
flat

 at flat

focusR  and that its FOV is oriented 

such that the center pixel in the image is below the horizon (Figure 5). The 

angle of the vertical field of view is denoted �, while the angle of the camera’s 

FOV parallel to R
flat

 is denoted �horizontal. Let Rfocus be the focus of the camera 

in R��DQG�OHW�20 be the first point on R
flat

 that is visible in the camera’s FOV. 

Let φ  be the angle that is formed between 20, Rfocus, and flat

focusR . Let V be the 

SODQH� WKDW�FRQWDLQV�20 and is parallel to the image plane. y is the unit vector 

associated with the vertical length of a pixel in the image plane, and u is the 

projection of y through Rfocus onto V in R. qcenter(n) is a function that maps 

pixels’ centers from the center column of the image plane onto points on V 

contained in R. gcenter(n) is a function that maps pixels’ centers from the center 

column of the image plane onto points on R
flat

. Note that  

         







−=








−=

2
h

2
h20

yy
centercenter gq .              (7) 

Let a be the vector between Rfocus and qcenter(h/2) and let b be the vector 

between Rfocus and qcenter(n). ! is the angle between a and b 

   
( ) ( )










 −−
a

u
n

=! h2/h
arctan              (8) 

where h is the number of rows in O and  

           ( ) ( )1d
1
d+d

c

c cos
cos

0 −=a .              (9) 

dc is tKH�PHDVXUHG�GLVWDQFH�IURP�20 to gcenter(h/2), d0 is the measured distance 
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from 
flat

focusR �WR�20, and 1 is the angle between a and R
flat

.  

      ( )( )0

1
/tan d+dd=1 cv

−
              (10) 

where dv is the measured distance between 
flat

focusR  and Rfocus. dn,w/2 is the 

distance between flat

focusR  and gcenter(n), and is calculated: 

       ( ) ( )
( ) 02/w,

2/sin

2/sin
h d!+��

!�
n=d

n
+

−
−

−u ,             (11) 

where�� is the angle between V and R
flat

,  

    1�=� −2/ ,               (12) 

and the magnitude of u is calculated by: 

             ( )1= c sin
h

2d
u .              (13) 

The inverse function to (11) is given by  

          
( ) ( )( )

( )( ) 










+

+−
−

−= −

−

2

1

/tan2/sin

/tansin

2/w,

1

2/w,

1

02/w,

σπ nv

nvn

dd

dddd
hn

u
,            (14) 

If the image distortion caused by a rotation of 2/horizontalθ  can be ignored, e.g. 

if 2/horizontalθ  is small such that ( ) ( )2/sin2/tan horizontalhorizontal θθ ≈ , or the 

camera surface is curved such that the distance from the focus to the sensor 

array is constant, then 

        2/w,, nmn dd ≈ .                               (15) 

 Let % be the angular distance in R
flat

 associated with the R
flat

 projection 

of the endpoints of i. If the endpoints of i exist in columns m1 and m2 of O, 

then given (15) 
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| |

w

�mm
=% horizontal12 −

,              (16) 

where w is the number of columns in O. 

 Note that the assumptions of (15) allow d to be calculated as a function 

of grid row (n or j) and four intrinsic values associated with the robotic system 

in general. Likewise, ψ is dependent on the difference between two grid 

columns |m-k| and two intrinsic values. Thus, the calculation of 
flat

R

iD  can be 

performed offline, once for each combination of n, j, and |m-k|, and stored for 

later use in a three dimensional look-up table.  

 

Figure 6.  
flat

R

iD  is used to find a path in O that is then projected into 

R
flat

. The 
flat

R

iD  distance required to reach the goal by going around the 

base of the tree is about the same as the distance required to reach the 

goal by going up the trunk of the tree. The optimal path avoids the 

trunk of the tree if the force values created by the tree are slightly 

higher than those of the neighboring ground. 

 

 By projecting i all the way down to R
flat

, the 
flat

R

iD  distance required to 

go up the front of the tree is the same as the distance required to reach the goal 

by traversing along R
flat

. As a result, the distance required to reach the goal by 

going just to the side of the trunk is about the same as going along (i.e. up) the 
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trunk (Figure 6). Paths chosen to minimize W calculated with 
flat

R

iD avoid the 

tree climbing problem because, as long as the Fi values associated with the 

tree are slightly greater than those associated with unimpeded terrain, the path 

up the tree will be avoided in favor of the path directly next to the tree.  

 Even though both the R

iD  path and the  
flat

R

iD path initially terminate at 

the same goal—apparently in the middle of the tree. The 
flat

R

iD  path is more 

likely than the R

iD  path to take the robot around the base of the tree. Once this 

has happened, the tree will no longer obscure the goal and the goal will no 

longer appear to be in the tree.  

 O

iD , the third distance metric evaluated, is simply the L
2
 norm in O, 

assuming that horizontal and vertical neighbors are spaced unit length apart. 

The A* search algorithm often computes the actual cost of moving from a 

given grid location to one of its neighbors. A slight speed increase is achieved 

by noting that the distance between any two neighboring locations will always 

be one of two values, depending on if the movement is diagonal, or strictly 

horizontal or vertical.  

    ( ) ( )








±=±=
±=
±=

=−+−
1,12

11

11
22

mknj

mk

nj

kmjn=D
O

i
             (17) 

This simplification is not possible for the estimated cost step of A*, which 

will generally require the standard computation of the L
2
 norm. The 

calculation of O

iD  forgoes any projections from image space into Cartesian 
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space, allowing O

iD  to be calculated relatively easily compared to 
flat

R

iD . 

 

Section C, Image Space Occupancy Grid Preprocessing 

Subsection 1, Horizontal Obstacle Dilation 

 The A* search algorithm finds a path to the goal that minimizes the 

work expenditure as a function of both the distance traveled and the difficulty 

of travel. However, this model accounts for neither the physical extension of 

the robot, nor its ability to rotate in place around its central axis. As suggested 

by [4], [13], and [26], the width of obstacles in the occupancy grid are 

increased as a function of robot width �, allowing the robot to be treated as a 

point during path search. Note that the apparent width of an obstacle in O is 

related to the distance between the robot and the obstacle in R. This 

relationship can be approximated by assuming that obstacles exist on R
flat

. 

With this assumption, the distance to an obstacle is dn,m, and obstacle dilation 

becomes a function of n that can be calculated offline. 

    ( )
kmnmn OO ±= ,, max               (18) 

where dilation width k is an integer such that 1 ���m ± k) ��Z�DQG� 

 




















 +
≤≤





















 +
− −−

mnhorizontalmnhorizontal d
k

d ,

1

,

1 2/
sin

w2/
sin

w ελ
θ

ελ
θ

           (19) 

where �horizontal has the same definition as in III-B, and 0 is the minimum 

clearance allowed between the robot and an obstacle. This assumes that each 

row in O represents an approximately equal angle of �horizontal.  

 It was found that linear approximations to k performed well in 
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practice. Such an approximation is calculated as a linear function of grid row: 

 ( )( ) ( )( )
expansionstartexpansionstart cnnkcnn −≤≤−− ,1max,1max ,             (20) 

where nstart and cexpansion are constants. nstart is the row at which 

ελ += 2/
flat

R

iD  between the two neighboring grid locations (nstart, m) and 

(nstart, m+1). In other words, nstart is the row in O for which the width of a 

single pixel contains as much 
flat

R

iD  distance as one half of the robot width 

plus the minimum obstacle clearance. If the robot is placed in the center of a 

KDOOZD\�RI�ZLGWK����0��such that the center of the robot’s FOV is parallel to 

the two walls of the hallway, then the slope factor, cexpansion, is tuned so that 

the dilated left and right boundaries of the hallway barley touch on the bottom 

row of O. 

 

Subsection 2, Vertical Obstacle Dilation 

 The assumption in (19) that obstacles exist on R
flat

 is only valid for 

portions of obstacles that are in direct contact with the ground plane (i.e. their 

bases). In many environments navigation around the base of an obstacle is 

sufficient to avoid collision, but this is not generally the case. For instance, 

consider the case of an obstacle that increases in radius as a function of height. 

The factor 0 can be increased to address this discrepancy; however this is not a 

robust solution because each specific value of 0 will only work for a subset of 

all obstacles. A better (although more time consuming) solution is to force an 

obstacle’s width on R
flat

 to be indicative of the maximum width of that 

obstacle that presents a navigational hazard to the robot. This can be achieved 
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by performing a vertical dilation to propagate a given obstacle’s width 

information down to its base before the horizontal dilation occurs. In other 

words, setting the width of the obstacle’s base to be equal to the obstacle’s 

maximum width, in order to ensure that navigation around the base is always 

sufficient to avoid collision with the obstacle.  

 The vertical length of the dilation must be a function of how far a 

given point is away from the robot (note that this is also a function of 

disparity). This is because the obstacle that generates the cost information 

located at a particular row of O may exist at an infinite number of elevation 

and distance combinations. The vertical length of the dilation should reflect 

the robot’s height, as perceived in O, at the distance that the obstacle is 

detected.  Additionally, if the robot can safely travel under an obstacle, then it 

does not make sense to increase the cost of the area under the obstacle. A 

vertical length dilation equation is now derived. 

 

 

Figure 7, Quantities used to calculate vertical length dilation. 
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 Let Rfocus, 
flat

focusR , h, n, m, dv, a, b, u, �, 1, !, and φ  be defined as they 

were in III-B and Figure 5. Note that the angle between a and the vector that 

travels from Rfocus to flat

focusR  can be expressed as: 

     σπθφ −=+ 2/2/               (21) 

Let Rpoint be a point in R that generates disparity information, Spoint, that is 

perceived by the camera. Let pv be the height of Rpoint above the ground plane, 

and let )( pointSϑ  be the distance from Rfocus to Rpoint as a function of Spoint: 

         
point

camera
point

S

c
S =)(ϑ               (22) 

where ccamera is calculated by multiplying the baseline of the stereo camera 

array by the focal length of the cameras. Note that ccamera is a constant 

associated with the stereo pair. Let n∠ be the angle between b and the vector 

that travels from Rfocus to flat

focusR . 

    ρσπ −−=∠ 2/n                (23) 

         ( ) ( )
nmnvv Sdp ∠−= cos,ϑ               (24) 

Dilation should extend from O(n,m) down to O(j,m) where j is given by: 
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Note that the vertical length dilation should only be performed for O(n,m) if the 

corresponding pv is greater than 0 and less than the height of the robot. 

 A separate dilation calculation is required for each combination of grid 
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row and disparity encountered by the system. If the computation of j is too 

time consuming, then a speed increase can be achieved via a pre-computed 

two dimensional look-up table of arbitrary precision. 

 

Subsection 3, Rotation and Horizon Considerations 

 O is preprocessed to enable rotation around the central axis of the 

robot by setting Oh,m = 0. The horizon is assumed to be generated from the 

ground plane R
flat 

at infinity, and pixels above the horizon are ignored in O. 

Note that this is only necessary if the distance metric O

iD  is being used 

because 
flat

R

iD  mandates that the cost of going above the horizon line is 

infinite. Initially, we believed that allowing sky traversal would provide the 

system with a method for dealing with navigation behind large obstacles. In 

practice, however, it was found that if the environment became sufficiently 

obstacle ridden, then the cheapest path to the goal nearly always traversed 

some portion of the sky. In extreme cases, the robot moved away from the 

goal indefinitely. For example, if the robot was not facing in the direction of 

the goal and a path through the sky induced the robot to move away from the 

goal, then the goal would appear to approach the horizon from the robot’s 

point of view. Thus, after the movement, the path through the sky would 

appear even more desirable.  

  

Section D, Using an Image Space Path for Navigation 

 Servoing is accomplished by steering toward a target location       
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Ptarget = PnTarget,mTarget located some predetermined distance along P in O. This 

is either achieved by mapping Ptarget into R
flat

 from O and then steering toward 

the resulting location, or by implementing the servoing function directly in O. 

In the experiments described in Chapter V, the latter method is used to 

calculate steering angle and speed where: 

           
( )

( ) ( )22
-h2/w

-h

nTargetmTarget

nTargetmaxSpeed
speed

+−
=              (26) 

            
( )

w

2w/mTarget
Angle steering horizontal −

=
θ

.             (27) 

 There is only a rotational component to movement if Ptarget = Oh,m�Z��, 

and there is only a translational component to movement if Ptarget = On�K�Z��. 

Otherwise, movement consists of a combination of translation and rotation. It 

is defined that the robot has reached the goal when Ptarget = Oh,w/2, or when the 

goal cannot be projected into O because Rgoal is too close to the robot. 



22 

CHAPTER IV, EXTENSIONS TO THE IMAGE PLANNER 

Section A, The Cylindrical Planner 

 The Cylindrical Planner is created by adding additional elements to O 

that allow for storage of information that has passed outside of the robot's 

rotational field of view in R. The model uses a cylindrical representation of O 

that can be thought of as a radialy panoramic mosaic of what the robot has 

experienced. Radialy panoramic mosaics have been used in the past for 

landmark detection and pose estimation [25], [27], [28]. For implementation 

purposes, O is represented as a simple 2D grid C, with the added requirement 

that Cn,1 is considered a neighbor of Cj,p, and Cj,1 is considered a neighbor of 

Cn,p, for all rows n and j in C, where j = {n+1,n,n-1} and p is the number of 

columns in C. Information is added to C by:  

    ( )
flat

mn,mnf+mn SS=C −,, ϕ .             (28) 

That is, information destined for storage in C is offset horizontally by a 

function of 3, robot yaw relative to North. f(3) is calculated as: 

          ( ) ( )
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In other words, stereo disparity data is placed into C as a function of the 

compass direction that the robot is facing when the image is captured. This 

implies that the cardinal directions South, West, North, East, and South, will 

be mapped from R into the following columns of C: 0,  p/4 ,  p/2 ,  3p/4 , 

and p, respectively.  

 f(3) is calculated ignoring the distortion that is caused by 
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approximating multiple planes as a cylinder, and ignoring the fact that the 

image plane is not parallel to the cylinder’s longitudinal axis. If the FOV is 

such that these distortions cannot be ignored, then two possible solutions 

exist: either a projection can be used that reconstructs the image plane 

correctly on the cylinder, or the FOV can be restricted in width such that the 

distortion is no longer a problem. For the LAGR vehicle, a linear shearing 

transformation is found to be effective at increasing the rotational accuracy 

the cylinder. The transformation involves increasing the row in C that a given 

camera pixel belongs to, as a function of the distance (in number of columns) 

that the pixel is located away from the center of the robot’s FOV. Note that 

this is only an approximation to the true transformation that would place 

camera information perfectly into the cylinder, however the linear 

transformation is fast, and hence desirable for the online application. 

 The A* search algorithm is modified for use on C by allowing path 

sections to exist across the South-South border, and by setting the robot’s 

location in C according to its pose: Crobot = Ch,f(ϕ). The goal is projected into C 

based on the compass heading of the goal relative to the robot and the distance 

between flat

focusR  and the goal on R
flat

. (14), derived in III-B, defines this 

projection. Figure 8 depicts a typical search through C. 
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Figure 8.  A path from the robot position to a goal located at the base 

of a tree through the Cylindrical Planner’s occupancy grid. Light to 

dark corresponds to low to high cost, respectively. 

 

 A function is now derived that describes how elements outside of the 

FOV in C should be updated for any combination of translation and rotation 

that the robot executes on R
flat

.  

 

Figure 9, Quantities used to compute the updating function for C. 

 Let point Rpoint be a point in R that generates the cost information 

stored at row n and column m of C when the robot is located at Rrobot. If the 

robot is moved to a new location, R’robot � Rrobot, then Rpoint will subsequently 

generate the cost information stored at row n’ and column m’ of the new 

cylinder C’. Note that the Cn,m may not be equal to C’n’,m’, n may not be equal 
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to n’, and m may not be equal to m’. This is because the directions and 

distances to Rpoint from Rrobot and R’robot may not be the same at the new 

location as they were at the old location. 

 When the FOV is not 2�, as is generally the case, this updating can be 

simulated by solving for n’, m’, and C’n’,m’, given n, m, Cn,m, and the 

movement of the robot between Rrobot and R’robot. Because C is a SWNES 

mosaic (and assuming that any change in height can be ignored) the only 

FRPSRQHQWV� RI�PRYHPHQW� WKDW� DIIHFW� WKHVH� FDOFXODWLRQV� DUH�ûE� DQG�ûN, the 

robot’s relative displacement in the East and North directions, respectively. 

Let h, ||a||, ||u||, !��and � have the same definitions as in (8) through (15) and 

Figure 5. Let T be the robot’s translation on R
flat

. 
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ENT ∆+∆=               (30) 

 Let� " and "’ be the radial locations of R’robot and Rrobot, relative to 

North, from the vantage point of Rrobot  and R’robot, respectively. 

       ( )NE ∆∆= ,arctan2ς ,             (31) 

    ( )NE ∆−∆−= ,arctan' 2ς ,             (32) 

 Let flat

pointR be the point on R
flat

 directly below Rpoint, and let � be the 

angle on R
flat

 between the vector from Rrobot to R’robot and the vector from 

Rrobot to flat

pointR  

      ςπ
π

µ −−
−

=
p

m )1(2
,             (33) 

where p is the number of columns in C. Let dp be the distance between Rrobot 

and flat

pointR , and let d’p be the distance between R’robot and flat

pointR . 
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The function ( )Sϑ  is defined in (22). ( )
mnS ,ϑ  is the depth associated with 

pixel (n,m) when the robot is at Rrobot, and ( )flat

mnS ,ϑ  is the depth associated with 

the same pixel when the robot exists on a flat plane. dn,m is defined in (15), 

and is a distance along R
flat

 associated with pixel (n,m) when the robot is at 

Rrobot. Note that the assumptions of (15) are valid because C is cylindrical. n’ 

and m’ are computed as follows: 
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and then rounded to the nearest integer. �’ is the angle on R
flat

 between the 

vector from R’robot to Rrobot and the vector from R’robot to flat

pointR . The sine and 

cosine of  �’ can be calculated as follows: 
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           ( )
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Note that the relations �’ = arcsin(sin(�’)) and �’ = arccos(cos(�’)) do not hold 

over the range 0 � �’ � ����7KHUHIRUH���’ must be calculated as follows: 
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The use of ( )
mnS ,ϑ  in (34) implies that a second cylinder Q, containing the 

depth values associated with C, must either be maintained separately or 

calculated from C:  

      ( )
flat

mnmn

camera
mnmn

SC

c
SQ

,,

,, +
== ϑ               (41) 

Let Q and Q’ represent the depth value cylinder when the robot is located at 

Rrobot and R’robot, respectively. Note that in practice it is easier to maintain Q 

separately from C, instead of calculating it from C. However, if the latter 

method is used, then the absolute value on the right hand side of (28) should 

be relocated to (5), in order to insure that (41) is correct.  

 When T=0 the updating functions for Q and C are defined respectively 

Q
’
=Q and C

’
=C; otherwise, Q’ is populated by 
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and C’ is populated by 
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Q’n’,m’ cannot be calculated if d’p is inside the cylinder, and thus below the 

cylindrical field of view. In that case, n’ will not exist as a row in Q’ or C’.    

 A strategy must be defined for dealing with what happens when one 

obstacle is occluded by another during translation, in which case more than 
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one point in Q may be mapped to Q’n’,m’. Generally, obstacles closer to the 

robot represent more of a navigational hazard; therefore, it is advisable to 

retain the minimum Q’n’,m’ value. As previously noted, it may be easier to 

maintain Q instead of C. If this is done, then force values are calculated: 

         
flat

mnmn

camarascalei
QQ

ccF
,,

11
1 −+=               (44) 

 Currently, it is computationally prohibitive to calculate this 

transformation within the robot’s reaction time. Therefore, An alternative 

memory-updating scheme is implemented by having C gradually forget 

information outside of the robot’s FOV as a function of the distance that the 

robot has traveled, 
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where dforget is the distance required to erase all rotational memory in a single 

update [26]. In this scheme, no translational updating takes place, and the 

values in C outside of the FOV will decay toward zero. dforget is manually 

tuned to mimic the information loss observed in the translation scheme. Note 

that dforget is also a function of the rate at which (45) is applied. 

 

Section B, The Hierarchical Planner 

 A Hierarchical Planner attempts to solve the path planning problem by 

dividing it up into the parallel problems of global and local planning. The 

local planner is charged with obstacle avoidance and navigation toward sub-
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goals. Meanwhile, the global planner concerns itself with a coarse 

representation of the entire world and returns appropriate sub-goals to the 

local planner. Hierarchical Planners have been used in a variety of robot path 

planning schemes [29], [30]. For instance, [31] models the global world as a 

graph of connected nodes in which each node acts as the local map. [13] also 

models the global world as a graph of connected nodes, but views the local 

world in top-down Cartesian space. In [32], both the local and global planners 

are versions of the top-down occupancy grid model. In standard Hierarchical 

Cartesian Planners, the local cost-map is high resolution, fixed in size, and 

remains centered on the robot; the global cost-map maintains a lower 

resolution, expands with exploration, and remains fixed to some global frame 

of reference. 

 We implement a Hierarchical Planner that uses a top-down occupancy 

grid and a Cylindrical Planner for its global and local planning components, 

respectively. This configuration combines the local path planning strengths of 

image based path planning—high resolution obstacle avoidance and 

servoing—with the global strengths of the birds-eye view occupancy grid—

translational memory. Data is stored in the global planner’s occupancy grid, B, 

as a projection of F onto R
flat

, and the resolution of B is 50 centimeters. Path 

planning through B is accomplished via a version of the work minimization 

A* search algorithm (4), where Di is the Euclidean distance between grid 

locations in B multiplied by the resolution of B. Sub-goals are chosen to be 10 

meters away from the robot. 
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CHAPTER V, EXPERIMENTS 

 The three implementations of image based planning systems, 

described in sections III-A , IV-A, and IV-B, respectively, are compared to a 

baseline top-down planner on three courses in unstructured outdoor 

environments. The Baseline Planner has an occupancy grid granularity of 50 

centimeters and is nearly identical to the global half of the Hierarchical 

Planner. All three image based systems use the O

iD  distance metric (described 

in section III-B). Courses 1, 2, and 3 are depicted in Figures 10, 11, and 12, 

respectively. The actual paths that the robot took are overlaid on a top-down 

occupancy grid map of the environment. For completeness of map 

information, all maps were generated independently of the test runs by 

teleoperation. The granularity of each occupancy grid is 50 centimeters. 

Course 1 is a simple course that consists of randomly placed obstacles with 

radii varying from 10 centimeters to 1 meter. Courses 2 and 3 are similar to 

Course 1, except that an obstacle of 10 meter girth is added on Course 2, and 

Course 3 contains two adjoining obstacles each 1 meter wide and 

approximately 30 and 10 meters long, respectively. Low to high cost is 

represented by light to dark, respectively. 
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Figure 10.  Course 1: obstacles of small radii. 

 

 
Figure 11.  Course 2: an obstacle of 10 meter girth. 
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Figure 12.  Course 3: two adjoining long thin obstacles. 

 

 

 A version of the Hierarchical Planner using the 
flat

R

iD  distance metric 

was also tested on course 3. The rout taken by this system is depicted in 

Figure 13. 

 

Figure 13.  
flat

R

iD  distance metric performance on Course 3.  
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CHAPTER VI, DISCUSSION AND RESULTS 

 Path planning for robot navigation is a real-time system in which the 

robot must be able to observe the world and react quickly enough to guarantee 

safety and reliability. At the robot’s minimum speed (approximately 0.125 

m/s), robust navigation requires that the robot perceive the world and react at 

least every quarter meter, or 0.5 Hz. Ideally, it is desirable for the robot to 

translate at a rate of 0.5 m/s or greater, which means the robot must plan at 

least 2 Hz. Improving frame-rate beyond this is not unreasonable given state 

of the art CPUs. Nonetheless, care is taken to limit the time complexity of the 

algorithms, particularly the distance calculations. As noted in section III-B, 

flat
R

iD can be calculated off-line, thus reducing the online distance calculation 

to a table-lookup. 

 In practice, it was found that the 
flat

R

iD  distance metric causes the path 

to be extremely sensitive to noise. When noise occurs in an otherwise 

traversable area, it creates a pseudo-obstacle that the planning system attempts 

to avoid like any other high cost region. 
flat

R

iD  mandates that the cost 

associated with traveling between neighboring grid locations decreases as a 

function of occupancy grid row (Figure 14). Thus, the least expensive path 

around an obstacle located in the far field will try to avoid the obstacle in the 

near field—often by an immediate rotation.  This would not be a problem in 

the absence of noise. However, because pseudo-obstacles pop in and out of 

existence, erratic behavior is induced by the planning system’s continuous 

attempts to avoid new pseudo-obstacles (i.e. with immediate rotation after 
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immediate rotation). Figures 12 and 13 show, respectively, the performance of 

the Hierarchical Planner using the O

iD  and 
flat

R

iD  metrics on Course 3. The 

route taken by the hierarchical planning system in Figure 12 is much smoother 

than the one in Figure 13.  

 
Figure 14. Distortion Ratio as a function of occupancy grid row 

(percentage from bottom of image to horizon), where Distortion Ratio 

is 
flat

R
iD  for vertical and horizontal neighbors divided by 

flat
R
iD  for the 

bottom most vertical and horizontal neighbors, respectively (top). Note 

that this is proportional to O
i

R
i DD

flat

. Close up of distortion ratio 

(bottom).  

 

 O

iD  tends to distort R
flat

 distance, especially in the far field (Figure 

14). However, O

iD  works well in practice. By defining the distance between 

neighbors to be invariant of grid location, it avoids the noise induced near-

field path corrections that were observed with 
flat

R

iD . This is because paths are 

penalized equally for near or far field detours, so the path is free to follow the 
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geodesic around an obstacle or pseudo-obstacle without making a significant 

and immediate correction. Also, because the range of our stereo sensors is 

effectively 15 meters, severe far-field distance distortion is somewhat 

irrelevant. Note that in Figure 10 the distortion ratio is less than 2 for 

approximately one third of the occupancy grid, where Distortion Ratio is 

defined to be 
flat

R

iD  for vertical and horizontal neighbors divided by 
flat

R

iD  for 

the bottom most vertical and horizontal neighbors, respectively. Because 

O

iD is always 1 for horizontal and vertical neighbors, this is also proportional 

to O

i

R

i DD
flat

. 

 The experiments illustrated that the basic Image Planner is able to 

navigate through simple courses, such as Course 1; however, it is not a robust 

planning system. For instance, when Rgoal is not in the robot's FOV it cannot 

be mapped into O. This will happen if the robot starts in such an orientation, is 

close to the goal, or has rotated away from Rgoal in order to avoid an obstacle. 

Consequently, the Image Planner fails unless some predefined course of 

action is hard-coded into the system. The first case is solved by requiring the 

robot to rotate in the direction of the goal upon start-up. The second case can 

be ignored because it will only happen once the robot has completed its task. 

The final case is non-trivial and plans of action must involve movement 

containing both a translational component and a rotational component.  

 Without both translation and rotation, the robot risks never finding a 

path to the goal. Purely forward movement will carry the robot away from the 

goal indefinitely, whereas movement in the reverse direction risks obstacle 
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collision. Pure rotation may induce oscillatory behavior, as the robot 

alternately rotates away from the obstacle and then back toward the goal after 

forgetting that the obstacle exists. The Image Planner was observed to display 

this behavior on Courses 2 and 3, Figures 11 and 12, respectively—note that 

each test was manually aborted after the robot oscillated for two minutes. A 

naive procedure that translates some distance before allowing rotation in the 

direction of the goal may perturb the system enough to overcome this 

condition. However, this does not address the deeper problem at the heart of 

rotational-oscillatory behavior—namely, the lack of rotational memory. The 

rotational memory of the Cylindrical Planner allows it to remember the 

obstacle's existence, even when the obstacle is outside the robot’s field of 

view. Note that in Figure 11 the Cylindrical Planner navigates around the 

obstacle to the goal.  

 The Cylindrical Planner was able to find the goal in all three tests. 

However, on Course 3 (Figure 12) it was the only planning system that opted 

to travel around the lengthier of the two obstacles. We speculate that this 

behavior would have degenerated into translational oscillation if the obstacle 

had been longer. Consider the case of Figure 15, top. A goal is placed directly 

North of the center of a long thin wall that runs East to West (e.g. the length 

of the wall is 1km and the width of the wall is 1m). The robot starts South of 

the center of the wall. At first, given the information in C, it will appear 

possible to navigate around the wall in either direction. However, as the robot 

moves toward one end of the wall, the goal will appear to move toward the 
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opposite end of the wall from the robot’s point of view (Figure 15, bottom). 

Eventually, it will appear cheaper to reverse direction and attempt to reach the 

goal by going around the opposite end of the wall. This will repeat each time 

the robot travels a certain distance away from the goal in either direction.  

 

 

  
Figure 15, Translational oscillation induced in the Cylindrical Planner by a 

long thin wall. The initial path around the wall (top), and the path at a later 

time (bottom). 

 

 

 The only way to avoid this problem is to introduce some form of 

global translational memory, such as a global 3D or 2D top-down Cartesian 

Planner. Local versions of these planners do not suffice—they are, by 

definition, only concerned with portions of the world near the robot and will 

always be vulnerable to translational oscillation induced by obstacles larger 

than their translational memory. The Hierarchical Planner, on the other hand, 

will eventually find a way around a large obstacle—if one exists—with the 

help of its global Cartesian Planner. However, solutions can still be 

suboptimal. For example, the robot may backtrack many times as it explores 

for a way around the wall [33]. This is observed in Figure 12 for both the 
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Baseline Planner and the Hierarchical Planner. This suboptimal behavior can 

be described as translational quasi-oscillatory, and is related to (but not 

identical to) the translational oscillatory problem previously addressed. Any 

planning system that must make decisions based on limited information is 

susceptible to quasi-oscillatory behavior because any currently optimal 

solution may change as new information is discovered. Work has been done 

on this complex global planning phenomenon by [34].  

 If the system has sufficient prior knowledge of the domain (e.g. a 

perfect map) then the planner is able to make piece-wise optimal decisions 

that form a globally optimal decision. Highly structured environments, for 

instance those encountered by autonomous highway driving algorithms, may 

contain sufficient information to use a local planner in a global setting. 

Similarly, the Cylindrical Planner is equipped to navigate through 

environments similar to Courses 1 and 2 without the help of the Hierarchical 

Planner. 
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CHAPTER VII, FUTURE WORK 

 The high fidelity occupancy grid used in image space planning 

provides a natural framework to include more sophisticated models about the 

traversability of terrain. A natural extension to this work is to combine color 

and texture models with stereo information to incorporate more environmental 

knowledge, and allow for more robust path planning.  

 One unaddressed limitation of the Cylindrical planning system is its 

inability to plan behind obstacles that the robot cannot see over. This is a 

direct result of the fact that the Image Planner only has the ability to store 

complete information about two of the three dimensions that it uses. 

Attempting to solve this problem by allowing sky traversal caused failure in 

certain circumstances. A similar idea that may work is to artificially place low 

cost regions at specific places in the map. For instance, setting the force 

associated with a grid location to one if it happens to be in the same row that 

the goal is projected into, and within a certain number of columns away from 

the goal. This is similar to an idea from Applied Perception, Inc., a fellow 

LAGR participant, who suggested allowing easy horizontal movement 

everywhere in O, in order to reflect the fact that the robot may be able to go 

behind things in the cost map. Interestingly, the 
flat

R

iD distance required to 

move to a horizontal neighbors is always much less than the
flat

R

iD distance 

required to move to a vertical neighbor, given the same starting location. This 

suggests that if the noise observed in our system could be reduced, then the 

flat
R

iD  metric may be a principled way to account for the possibility of  
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traversing behind obstacles. 

 It is worth noting that humans, given a similar world view, are able to 

use logic to reason about such things. For instance, they know that they can 

probably traverse horizontally through a forest, but that they probably will not 

be able to travel directly through a cliff face or a cement wall. Hence, It may 

be possible to use supervised or simi-supervised machine learning to build 

traversibility models of scenes in order to give the robot a similar knowledge 

base. 

 If a faster way of updating the part of the cylinder that is outside of the 

robot’s FOV could be implemented, then it would allow the cost map of the 

cylindrical model to be more robust during translation. It is also possible that 

approximations to the full translational updating scheme could provide more 

useful information than what is currently provided by exponentially forgetting 

the part of the map that is outside of the robot’s FOV. Several possible 

schemes include: assuming that all obstacles lie on two walls that are parallel 

to the direction of robot translation, one on either side of the robot and both a 

fixed distance away from the robot; adding an additional two walls, one in 

front of the robot and another behind it, that are perpendicular to the first two 

walls; and performing the entire translation at a limited disparity granularity—

thus allowing the offline pre-computation of updated cost values and their 

corresponding locations. 
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CHAPTER VIII, CONCLUSIONS 

 We have demonstrated the efficacy of using image based path 

planning. However, We have also discovered that any robust path-planning 

algorithm must address two environmental scenarios: those that lead to 

rotational oscillation and those that lead to translational oscillation. The Image 

Planner is susceptible to both, a limitation not shared by the traditional top-

down Cartesian Planners. We address these situations with a series of 

extensions to the Image Planner. By augmenting the memory of the Image 

Planner to include the world beyond the FOV, the Cylindrical Planner is 

capable of overcoming rotational oscillations and reducing translational 

oscillations. In general, the translational oscillation problem can only be 

solved by a planner that maintains global translational memory. Although 

planning in image space does not displace the Cartesian Planner, it does 

relegate it to the more aptly suited function of global planning. Local planning 

in image space is robust, and provides a simple framework for maintaining a 

high resolution world-view.  A Hierarchical Planner combines the strengths of 

both systems and is able to plan a more natural path, which can then be 

executed more fluidly.  

 The end goal of these efforts is a principled interaction between 

Cylindrical and Cartesian path planning. This is the first such successful 

framework, and sets the stage for future research efforts. 
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