

PATH PLANNING IN IMAGE SPACE FOR THE AUTONOMOUS

NAVIGATION OF UNMANNED VEHICLES IN UNSTRUCTURED

OUTDOOR ENVIRONMENTS

By

MICHAEL WILSON OTTE

B.S., Clarkson University, 2005

A thesis submitted to the Faculty of the

College of Engineering and Applied Science of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Master of Science

Department of Computer Science

2007

This thesis entitled:

Path Planning in Image Space for the Autonomous Navigation of Unmanned

Vehicles in Unstructured Outdoor Environments

written by Michael Wilson Otte

has been approved for the Department of Computer Science

Gregory Grudic

Jane Mulligan

Mike Mozer

Date______________

The final copy of this thesis has been examined by the signatories, and we

Find that both the content and the form meet acceptable presentation standards

of scholarly work in the above mentioned discipline.

 iii

Otte, Michael Wilson (M.S., Computer Science)

Path Planning in Image Space for the Autonomous Navigation of Unmanned

 Vehicles in Unstructured Outdoor Environments

Thesis directed by Assistant Professor Greg Grudic

 An approach to stereo based local path planning in unstructured

environments is presented. The approach differs from previous stereo based

and image based planning systems (i.e. top-down occupancy grid planners,

autonomous highway driving algorithms, and view-sequenced route

representation), in that it uses specialized cost functions to find paths through

an occupancy grid representation of the world directly in the image plane, and

forgoes the standard projection of cost information from the image plane

down onto a top-down 2D Cartesian cost map. Three cost metrics for path

selection in image space are discussed. A basic image based planning system

is presented, and its susceptibility to rotational and translational oscillation is

discussed. Two extensions to the basic system are presented that overcome

these limitations—a cylindrical based image system and a hierarchical

planning system. All three systems are implemented in an autonomous robot

and are tested against a standard top-down 2D Cartesian planning system on

three outdoor courses of varying difficulty. It was found that the basic image

based planning system fails under certain conditions; however, the cylindrical

based system is well suited to the task of local path planning and for use as a

high resolution local planning component of a hierarchical planning system.

This Thesis is Dedicated to My Family.

v

ACKNOWLEDGEMENTS

 I would like to thank Daniel Lee at the University of Pennsylvania for

providing me with computer code for a top down Cartesian planning system. I

would also like to thank Greg Grudic, Jane Mulligan, Scott Richardson, Adam

Bates, and all of the other members of the Intelligence in Action Laboratory at

the University of Colorado, Boulder, for their help with programming the

sensory components of our robotic system, field testing, and advice on this

research. Finally, I would like to thank the Defense Advanced Research

Projects Agency, and the National Science Foundation for supporting this

work.

vi

CONTENTS

CHAPTER PAGE

I. INTRODUCTION …………………………………………. 1

II. EXPERIMENTAL APPARATUS ………………………… 5

III. THE IMAGE PLANNER

A. Occupancy Grids and Cost Functions …………… 7

B. Distance Metrics ………………………………… 9

C. Image Space Occupancy Grid Preprocessing

 1. Horizontal Obstacle Dilation …………….. 16

 2. Vertical Obstacle Dilation ……………….. 17

 3. Rotation and Horizon Considerations …… 20

D. Using an Image Space Path for Navigation ……... 20

IV. EXTENSIONS TO THE IMAGE PLANNER

A. The Cylindrical Planner ………………………….. 22

B. The Hierarchical Planner ………………………… 28

V. EXPERIMENTS …………………………………………… 30

VI. DISCUSSION AND RESULTS …………………………… 33

VII. FUTURE WORK ………………………………………….. 39

VIII. CONCLUSIONS …………………………………………... 41

REFERENCES …………………………………………………….. 42

vii

FIGURES

FIGURE PAGE

1. The DARPA LAGR Robotic Platform ………………………… 5

2. A Path In Image Space ………………………………………… 7

3. R

iD Path When The Goal is Behind a Tree …………………… 10

4. Quantities Used In The Calculation of
flat

R

iD ………..………... 11

5. Quantities Used In The Calculation of d And % ………………. 11

6.
flat

R

iD Path When The Goal is Behind a Tree …………………. 14

7. Quantities Used In The Calculation of Vertical Length Dilation 18

8. A Path In The Cylindrical Planner …………………...………... 24

9. Quantities Used In The Updating Function of C ………………. 24

10. Robot Paths, Course 1 ………………………………..………... 31

11. Robot Paths, Course 2 ………………………………..………... 31

12. Robot Paths, Course 3 ………………………………..………... 32

13. The Hierarchical Model With
flat

R

iD On Course 3 ……………... 32

14. Distortion Ratio ………………………………………………... 34

15. Translational Oscillation ……………………………..………... 37

1

CHAPTER I, INTRODUCTION

 Autonomous robot navigation aims to identify a series of movements

that, when executed in a sequence, will translate the robot from a starting

position to a goal position. The search for this path is constrained by the

robot’s sensor information and kinematics. Ideally, the path is chosen to

minimize (or maximize) some criteria, such as energy expenditure. In highly

structured environments, such as those encountered by a manipulator arm on a

factory floor, an objective function can be found that describes the manifold

on which the arm is constrained in actuator space. In this case, however,

uncertainty about the world is limited. On the other hand, in unstructured

environments—particularly outdoor environments beyond the city streets and

paths of human infrastructure—there is not such high confidence a priori

knowledge about the relationship between the appearance of a scene and its

traversability.

 Visual perception involves decoding 2D projections of 3D Cartesian

space as they are captured by a robot’s imaging sensors [1], [2]. These 2D

projections are said to exist in image space. Many approaches to path

planning in unstructured environments derive an obstacle vs. safe

representation of a scene—referred to as an occupancy grid—which is created

by projecting information from image space down onto the ground plane and

then inserting it into an X-Y Cartesian map [3], [4]. Path planning systems

have also used 3D occupancy grids to represent the world [5]. The A*

algorithm [6] (or some variant [7]–[9]) is then used to find a path through the

2

occupancy grid between the robot’s position and the goal [3]. Work has also

been done to model the path planning problem with various types of potential

fields, as in [10] and [11], and as a hybrid of A* and potential fields, as in

[12].

 There are a number of advantages to planning a mobile robot’s

movement in a Cartesian map. However, this representation is not ideal for

near-field planning—in order to maintain a map with a computationally

feasible search space, the world must be resampled at a non-native resolution.

Although there are some planners that maintain a higher resolution map for

local path planning, e.g. [13], We propose that the transformation onto the

Cartesian plane is superfluous.

 To the best of our knowledge, planning and actuation in image space

has not been studied on a robotic platform for use in unstructured

environments. There are, however, examples of image based visual servoing

in semi-structured and structured environments.

 Autonomous highway driving algorithms [14]–[18] operate in a semi-

structured environment. Information from image features such as lane

markings, other automobiles, road color/texture, etc, allow these algorithms to

follow the road while avoiding obstacles.

 A robotic arm on a factory floor can be controlled via a constraint

optimization function that maps the current field of view (FOV) to a reference

or target frame through a series of movements [19], [20]. This idea has been

extended to mobile robots in semi-structured environments in various forms

3

[21]–[23]. For instance, View-Sequenced Route Representation (VSRR) is a

mapless navigation technique that calculates the displacement between a

target image and the current FOV [24], [25]. This displacement is then

translated into steering commands.

 Autonomous highway driving algorithms and VSRR type models

develop a control strategy as a function of the perceived scene. However, both

make assumptions about the information that is available to them from the

scene; for instance, the existence of lane markings or a clear view of a

predefined goal state, respectively. These may be reasonable constraints in

structured or semi-structured environments; however, planning through

ambiguous terrain renders them infeasible.

 The task that we are concerned with involves not only identifying

traversable terrain from non-traversable terrain, but also finding and staying

on a path to the goal. Specifically, the best path to the goal given one or more

predefined optimality constraints and the current information about the world.

We present an approach to path planning that allows local path search to take

place directly in the image plane, preserving the flexibility of the occupancy

grid paradigm while avoiding the corresponding transformation distortion

induced by the projection into a Cartesian coordinate system. In this scheme, a

real-world GPS coordinate is projected into image space as the goal. Next, a

variant of A* is used directly in image space to identify an optimal path to the

goal. Finally, robot servoing in the real world is accomplished via the image

space path that is found by A*. Special attention must be placed on the run-

4

time complexity of the system to allow the robot a suitable reaction time.

 The basic image based planning system is called the Image Planner,

and is introduced in Chapter III. The Image Planner lacks memory of the

world and, therefore, planning can quickly degenerate into an infinite loop of

the form: move away from the goal to avoid an obstacle, and then move back

toward the goal (and thus the obstacle), after the obstacle’s existence has been

forgotten. These limitations are addressed with a series of extensions to the

Image Planner. The Cylindrical Planner, introduced in Section IV-A, is

created by augmenting the rotational memory of the Image Planner to include

the world beyond its FOV. A hybrid Hierarchical Planner, introduced in

Section IV-B, combines the strengths of a local Image Planner with those of a

global Cartesian planner. Experiments are presented in Chapter V and a

discussion of the results is presented in Chapter VI.

5

CHAPTER II, EXPERIMENTAL APPARATUS

Figure 1. The DARPA LAGR Robotic Platform.

 The mobile robot platform used for this work is provided in

conjunction with the DARPA Learning Applied to Ground Robotics (LAGR)

program. It measures roughly 1.2m x .8m x 1.2m. Its sensors include: two

forward facing Point Grey BumbleBee 2 stereo camera pairs, a Garmin GPS

receiver, a magnetic compass, and wheel odometers. There are also two

forward facing infrared sensors and a front bumper sensor. The computational

units include: one computer dedicated to each of the two stereo camera pairs,

a third for the planning system, and a fourth that acts as a servo controller.

 The stereo camera pairs are used to compute stereo disparity

information, as well as color and texture data. The disparity information is

accurate to approximately 15 meters, while color and texture data do not

suffer from this limitation. The infrared sensors have a range of approximately

6

1 meter and are used for passive obstacle detection and avoidance—that is, the

robot is decelerated if the infrared sensors detect an obstacle, however,

information from the infrared sensors is not placed into the cost map.

 Translation and rotation are achieved via two independently driven

front wheels. The wheels are located on either side of the vertical axis that

passes through the midpoint of the sensor mast, thus rotation around the mast

axis is achieved by driving the wheels in opposite directions at the same

speed.

7

CHAPTER III, THE IMAGE PLANNER

Section A, Occupancy Grids and Cost Functions

 Let R denote the 3D Cartesian real-world space. A primary goal of this

work is to achieve navigation through R toward a goal via paths found in

image space. The robot perceives R as a stereo disparity image S, provided by

a pair of stereo CCD cameras. The idea is to build an occupancy grid O in

image space based on S, and then find the path P
optimal

 that minimizes a

quantity W that is analogous to mechanical work (i.e. force multiplied by

distance). See Figure 2 for an example of such a path. Because any path found

in O is a projection of some path existing in R, it is possible to navigate

through R using P
optimal

. This can be done directly, or via a projection of

P
optimal

 from image space into R.

Figure 2. A path through O from the robot’s position to a goal in the

far-field—light to dark corresponds to low to high cost (left). The path

projected into a black and white image of the scene (right).

 S is organized in an h by w Cartesian grid based on the camera's

physical pixel layout. The traversability of R is defined with the occupancy

8

grid O:

 () flat

mn,mnmnmn SSSfO −== ,,, , (1)

where n = 1…h and m = 1…w. Note that n = 1 and m = 1 correspond to the

top row and left most column of O, respectively. mnS , is the disparity of pixel

(n, m) in the scene at time t and flat

mn,S is the nominal disparity of a flat ground

plane R
flat

. The goal Rgoal is defined by a GPS coordinate in R. Rgoal is mapped

into O as Ogoal, assuming that both

Rgoal and the robot exist on R

flat
. The

robot’s starting location in O is defined Ostart A�Oh,w/2. The traversability values

stored in O are interpreted as forces F that impede robot progress, and the

planning system searches for paths through O that minimize the amount of

work Wp that must be exerted to reach Ogoal from Ostart.

 ()∫=
goal

start

O

O
P dPPFW (2)

where dP is the differential of position along P. Ogoal and Ostart are nodes in O

that anchor the endpoints of P. P contains ||P|| connected subsections i in O,

each starting at the center of a grid location Oj,k and terminating at On,m, one of

the 8-connected neighbors of Oj,k. Therefore, the work required to traverse P

is found by the summation of work over its subsections.

∑ ∑

∈∀ ∈∀

==
Pi Pi

iiiP DFWW

, (3)

where Wi is the work required to navigate path subsection i, Fi is the force that

impedes robot progress along i, and Di is the length of i (i.e. the distance

between Oj,k and On,m). In order to find the optimal path, P
optimal

, a version of

the A* algorithm has been implemented that uses W as its cost function. The

9

path returned by A* will have W = Wmin, where Wmin is the minimum amount

of work required to reach the goal.

Wmin = FiDi

∀i∈P optimal

∑
 (4)

 The estimated cost that is used for A* is distance multiplied by one

unit of force. In order to maintain the constraints of A*, force values must be

scaled between 1 and some number greater than 1 to impose a positive

minimum force that is at least as great as the estimated cost for flat-ground

traversal:

 mnscalei OcF ,1+= (5)

cscale is a scaling factor that controls the ratio between the cost of flat ground

traversal and the maximum cost of traversal. For example, scaling Fi to have

the range [1,5] causes flat ground traversal to be relatively more expensive

than scaling Fi to have the range [1, 50]. In practice, we scale Fi to have the

range [1 10].

 Any metric used to calculate P
optimal

 must account for the fact that

paths found in O will determine navigation through R. Thus, care must be

taken when choosing a distance metric Di. In the next section, three possible

distance functions for Di are described.

Section B, Distance Metrics

 The most straightforward method for calculating Di, the length of a

path segment in image space, is to project the endpoints of path segment i

from O into R, with the help of S, and then use the standard Euclidian distance

10

metric in 3-space. Let this distance be called R

iD .

 Although this metric seems very appropriate, a problem arises when

the goal is projected into a high cost region (i.e. an obstacle). The optimal path

often involves a traversal directly through the obstacle. This is due to the fact

that, as far as the planner is concerned, the goal exists within the high cost

region of O and not behind the obstacle in R. For instance, if a tree is located

between the robot and a goal, then it will appear in O as if the goal has been

projected onto the front of the tree (Figure 3). Thus, the shortest path to the

goal appears to require climbing the tree. This phenomenon is a consequence

of the two dimensional nature of image space, and as a result, R

iD is not a

suitable distance metric for use in image space.

Figure 3, R

iD is used to find a path in O that is then projected back

into R. The goal appears to be on the front of the tree; therefore, the

shortest path to the goal involves going up into the tree.

flat

R

iD aims to correct for the problems of R

iD by defining the length of

i to be� WKH�&DUWHVLDQ�GLVWDQFH�EHWZHHQ�21�DQG�22, the endpoints of i projected

from the camera through the image plane and onto R
flat

—refer to Figure 4.

11

Figure 4. Calculation of
flat

R

iD . Rfocus is the focal point of the robot’s

camerD�DUUD\��21�DQG�22 are the endpoints of i projected onto R
flat

.

 Let �1 and �2 be the vectors that travel from the base of the robot
flat

focusR

WR�21�DQG�22, respectively.
flat

R

iD is calculated as follows:

 () 





−

2
sin4

2

2

2

21

ψ
dd+dd=D 1

flatR

i , (6)

where d1 and d2 are the magnitudes of �1 and �2, respectively, and ψ is the

angle between �1 and �2. Equations for d and ψ are now derived.

Figure 5. Quantities used in the calculations of d and %.

12

 Assume that the robot is on R
flat

 at flat

focusR and that its FOV is oriented

such that the center pixel in the image is below the horizon (Figure 5). The

angle of the vertical field of view is denoted �, while the angle of the camera’s

FOV parallel to R
flat

 is denoted �horizontal. Let Rfocus be the focus of the camera

in R��DQG�OHW�20 be the first point on R
flat

 that is visible in the camera’s FOV.

Let φ be the angle that is formed between 20, Rfocus, and flat

focusR . Let V be the

SODQH� WKDW�FRQWDLQV�20 and is parallel to the image plane. y is the unit vector

associated with the vertical length of a pixel in the image plane, and u is the

projection of y through Rfocus onto V in R. qcenter(n) is a function that maps

pixels’ centers from the center column of the image plane onto points on V

contained in R. gcenter(n) is a function that maps pixels’ centers from the center

column of the image plane onto points on R
flat

. Note that

 







−=








−=

2
h

2
h20

yy
centercenter gq . (7)

Let a be the vector between Rfocus and qcenter(h/2) and let b be the vector

between Rfocus and qcenter(n). ! is the angle between a and b

() ()










 −−
a

u
n

=! h2/h
arctan (8)

where h is the number of rows in O and

 () ()1d
1
d+d

c

c cos
cos

0 −=a . (9)

dc is tKH�PHDVXUHG�GLVWDQFH�IURP�20 to gcenter(h/2), d0 is the measured distance

13

from
flat

focusR �WR�20, and 1 is the angle between a and R
flat

.

 ()()0

1
/tan d+dd=1 cv

−
 (10)

where dv is the measured distance between
flat

focusR and Rfocus. dn,w/2 is the

distance between flat

focusR and gcenter(n), and is calculated:

 () ()
() 02/w,

2/sin

2/sin
h d!+��

!�
n=d

n
+

−
−

−u , (11)

where�� is the angle between V and R
flat

,

 1�=� −2/ , (12)

and the magnitude of u is calculated by:

 ()1= c sin
h

2d
u . (13)

The inverse function to (11) is given by

() ()()

()() 










+

+−
−

−= −

−

2

1

/tan2/sin

/tansin

2/w,

1

2/w,

1

02/w,

σπ nv

nvn

dd

dddd
hn

u
, (14)

If the image distortion caused by a rotation of 2/horizontalθ can be ignored, e.g.

if 2/horizontalθ is small such that () ()2/sin2/tan horizontalhorizontal θθ ≈ , or the

camera surface is curved such that the distance from the focus to the sensor

array is constant, then

 2/w,, nmn dd ≈ . (15)

 Let % be the angular distance in R
flat

 associated with the R
flat

 projection

of the endpoints of i. If the endpoints of i exist in columns m1 and m2 of O,

then given (15)

14

| |

w

�mm
=% horizontal12 −

, (16)

where w is the number of columns in O.

 Note that the assumptions of (15) allow d to be calculated as a function

of grid row (n or j) and four intrinsic values associated with the robotic system

in general. Likewise, ψ is dependent on the difference between two grid

columns |m-k| and two intrinsic values. Thus, the calculation of
flat

R

iD can be

performed offline, once for each combination of n, j, and |m-k|, and stored for

later use in a three dimensional look-up table.

Figure 6.
flat

R

iD is used to find a path in O that is then projected into

R
flat

. The
flat

R

iD distance required to reach the goal by going around the

base of the tree is about the same as the distance required to reach the

goal by going up the trunk of the tree. The optimal path avoids the

trunk of the tree if the force values created by the tree are slightly

higher than those of the neighboring ground.

 By projecting i all the way down to R
flat

, the
flat

R

iD distance required to

go up the front of the tree is the same as the distance required to reach the goal

by traversing along R
flat

. As a result, the distance required to reach the goal by

going just to the side of the trunk is about the same as going along (i.e. up) the

15

trunk (Figure 6). Paths chosen to minimize W calculated with
flat

R

iD avoid the

tree climbing problem because, as long as the Fi values associated with the

tree are slightly greater than those associated with unimpeded terrain, the path

up the tree will be avoided in favor of the path directly next to the tree.

 Even though both the R

iD path and the
flat

R

iD path initially terminate at

the same goal—apparently in the middle of the tree. The
flat

R

iD path is more

likely than the R

iD path to take the robot around the base of the tree. Once this

has happened, the tree will no longer obscure the goal and the goal will no

longer appear to be in the tree.

 O

iD , the third distance metric evaluated, is simply the L
2
 norm in O,

assuming that horizontal and vertical neighbors are spaced unit length apart.

The A* search algorithm often computes the actual cost of moving from a

given grid location to one of its neighbors. A slight speed increase is achieved

by noting that the distance between any two neighboring locations will always

be one of two values, depending on if the movement is diagonal, or strictly

horizontal or vertical.

 () ()








±=±=
±=
±=

=−+−
1,12

11

11
22

mknj

mk

nj

kmjn=D
O

i
 (17)

This simplification is not possible for the estimated cost step of A*, which

will generally require the standard computation of the L
2
 norm. The

calculation of O

iD forgoes any projections from image space into Cartesian

16

space, allowing O

iD to be calculated relatively easily compared to
flat

R

iD .

Section C, Image Space Occupancy Grid Preprocessing

Subsection 1, Horizontal Obstacle Dilation

 The A* search algorithm finds a path to the goal that minimizes the

work expenditure as a function of both the distance traveled and the difficulty

of travel. However, this model accounts for neither the physical extension of

the robot, nor its ability to rotate in place around its central axis. As suggested

by [4], [13], and [26], the width of obstacles in the occupancy grid are

increased as a function of robot width �, allowing the robot to be treated as a

point during path search. Note that the apparent width of an obstacle in O is

related to the distance between the robot and the obstacle in R. This

relationship can be approximated by assuming that obstacles exist on R
flat

.

With this assumption, the distance to an obstacle is dn,m, and obstacle dilation

becomes a function of n that can be calculated offline.

 ()
kmnmn OO ±= ,, max (18)

where dilation width k is an integer such that 1 ���m ± k) ��Z�DQG�





















 +
≤≤





















 +
− −−

mnhorizontalmnhorizontal d
k

d ,

1

,

1 2/
sin

w2/
sin

w ελ
θ

ελ
θ

 (19)

where �horizontal has the same definition as in III-B, and 0 is the minimum

clearance allowed between the robot and an obstacle. This assumes that each

row in O represents an approximately equal angle of �horizontal.

 It was found that linear approximations to k performed well in

17

practice. Such an approximation is calculated as a linear function of grid row:

 ()() ()()
expansionstartexpansionstart cnnkcnn −≤≤−− ,1max,1max , (20)

where nstart and cexpansion are constants. nstart is the row at which

ελ += 2/
flat

R

iD between the two neighboring grid locations (nstart, m) and

(nstart, m+1). In other words, nstart is the row in O for which the width of a

single pixel contains as much
flat

R

iD distance as one half of the robot width

plus the minimum obstacle clearance. If the robot is placed in the center of a

KDOOZD\�RI�ZLGWK����0��such that the center of the robot’s FOV is parallel to

the two walls of the hallway, then the slope factor, cexpansion, is tuned so that

the dilated left and right boundaries of the hallway barley touch on the bottom

row of O.

Subsection 2, Vertical Obstacle Dilation

 The assumption in (19) that obstacles exist on R
flat

 is only valid for

portions of obstacles that are in direct contact with the ground plane (i.e. their

bases). In many environments navigation around the base of an obstacle is

sufficient to avoid collision, but this is not generally the case. For instance,

consider the case of an obstacle that increases in radius as a function of height.

The factor 0 can be increased to address this discrepancy; however this is not a

robust solution because each specific value of 0 will only work for a subset of

all obstacles. A better (although more time consuming) solution is to force an

obstacle’s width on R
flat

 to be indicative of the maximum width of that

obstacle that presents a navigational hazard to the robot. This can be achieved

18

by performing a vertical dilation to propagate a given obstacle’s width

information down to its base before the horizontal dilation occurs. In other

words, setting the width of the obstacle’s base to be equal to the obstacle’s

maximum width, in order to ensure that navigation around the base is always

sufficient to avoid collision with the obstacle.

 The vertical length of the dilation must be a function of how far a

given point is away from the robot (note that this is also a function of

disparity). This is because the obstacle that generates the cost information

located at a particular row of O may exist at an infinite number of elevation

and distance combinations. The vertical length of the dilation should reflect

the robot’s height, as perceived in O, at the distance that the obstacle is

detected. Additionally, if the robot can safely travel under an obstacle, then it

does not make sense to increase the cost of the area under the obstacle. A

vertical length dilation equation is now derived.

Figure 7, Quantities used to calculate vertical length dilation.

19

 Let Rfocus,
flat

focusR , h, n, m, dv, a, b, u, �, 1, !, and φ be defined as they

were in III-B and Figure 5. Note that the angle between a and the vector that

travels from Rfocus to flat

focusR can be expressed as:

 σπθφ −=+ 2/2/ (21)

Let Rpoint be a point in R that generates disparity information, Spoint, that is

perceived by the camera. Let pv be the height of Rpoint above the ground plane,

and let)(pointSϑ be the distance from Rfocus to Rpoint as a function of Spoint:

point

camera
point

S

c
S =)(ϑ (22)

where ccamera is calculated by multiplying the baseline of the stereo camera

array by the focal length of the cameras. Note that ccamera is a constant

associated with the stereo pair. Let n∠ be the angle between b and the vector

that travels from Rfocus to flat

focusR .

 ρσπ −−=∠ 2/n (23)

 () ()
nmnvv Sdp ∠−= cos,ϑ (24)

Dilation should extend from O(n,m) down to O(j,m) where j is given by:

() ()












+

















 ∠
−−=

2

hsin
arctan2/tan

,

v

nmn

d

S
j

ϑ
σπ

u

a
 (25)

Note that the vertical length dilation should only be performed for O(n,m) if the

corresponding pv is greater than 0 and less than the height of the robot.

 A separate dilation calculation is required for each combination of grid

20

row and disparity encountered by the system. If the computation of j is too

time consuming, then a speed increase can be achieved via a pre-computed

two dimensional look-up table of arbitrary precision.

Subsection 3, Rotation and Horizon Considerations

 O is preprocessed to enable rotation around the central axis of the

robot by setting Oh,m = 0. The horizon is assumed to be generated from the

ground plane R
flat

at infinity, and pixels above the horizon are ignored in O.

Note that this is only necessary if the distance metric O

iD is being used

because
flat

R

iD mandates that the cost of going above the horizon line is

infinite. Initially, we believed that allowing sky traversal would provide the

system with a method for dealing with navigation behind large obstacles. In

practice, however, it was found that if the environment became sufficiently

obstacle ridden, then the cheapest path to the goal nearly always traversed

some portion of the sky. In extreme cases, the robot moved away from the

goal indefinitely. For example, if the robot was not facing in the direction of

the goal and a path through the sky induced the robot to move away from the

goal, then the goal would appear to approach the horizon from the robot’s

point of view. Thus, after the movement, the path through the sky would

appear even more desirable.

Section D, Using an Image Space Path for Navigation

 Servoing is accomplished by steering toward a target location

21

Ptarget = PnTarget,mTarget located some predetermined distance along P in O. This

is either achieved by mapping Ptarget into R
flat

 from O and then steering toward

the resulting location, or by implementing the servoing function directly in O.

In the experiments described in Chapter V, the latter method is used to

calculate steering angle and speed where:

()

() ()22
-h2/w

-h

nTargetmTarget

nTargetmaxSpeed
speed

+−
= (26)

()

w

2w/mTarget
Angle steering horizontal −

=
θ

. (27)

 There is only a rotational component to movement if Ptarget = Oh,m�Z��,

and there is only a translational component to movement if Ptarget = On�K�Z��.

Otherwise, movement consists of a combination of translation and rotation. It

is defined that the robot has reached the goal when Ptarget = Oh,w/2, or when the

goal cannot be projected into O because Rgoal is too close to the robot.

22

CHAPTER IV, EXTENSIONS TO THE IMAGE PLANNER

Section A, The Cylindrical Planner

 The Cylindrical Planner is created by adding additional elements to O

that allow for storage of information that has passed outside of the robot's

rotational field of view in R. The model uses a cylindrical representation of O

that can be thought of as a radialy panoramic mosaic of what the robot has

experienced. Radialy panoramic mosaics have been used in the past for

landmark detection and pose estimation [25], [27], [28]. For implementation

purposes, O is represented as a simple 2D grid C, with the added requirement

that Cn,1 is considered a neighbor of Cj,p, and Cj,1 is considered a neighbor of

Cn,p, for all rows n and j in C, where j = {n+1,n,n-1} and p is the number of

columns in C. Information is added to C by:

 ()
flat

mn,mnf+mn SS=C −,, ϕ . (28)

That is, information destined for storage in C is offset horizontally by a

function of 3, robot yaw relative to North. f(3) is calculated as:

 () ()














 −

= p
2

p
mod

π
πϕ

ϕf , (29)

In other words, stereo disparity data is placed into C as a function of the

compass direction that the robot is facing when the image is captured. This

implies that the cardinal directions South, West, North, East, and South, will

be mapped from R into the following columns of C: 0,  p/4 ,  p/2 ,  3p/4 ,

and p, respectively.

 f(3) is calculated ignoring the distortion that is caused by

23

approximating multiple planes as a cylinder, and ignoring the fact that the

image plane is not parallel to the cylinder’s longitudinal axis. If the FOV is

such that these distortions cannot be ignored, then two possible solutions

exist: either a projection can be used that reconstructs the image plane

correctly on the cylinder, or the FOV can be restricted in width such that the

distortion is no longer a problem. For the LAGR vehicle, a linear shearing

transformation is found to be effective at increasing the rotational accuracy

the cylinder. The transformation involves increasing the row in C that a given

camera pixel belongs to, as a function of the distance (in number of columns)

that the pixel is located away from the center of the robot’s FOV. Note that

this is only an approximation to the true transformation that would place

camera information perfectly into the cylinder, however the linear

transformation is fast, and hence desirable for the online application.

 The A* search algorithm is modified for use on C by allowing path

sections to exist across the South-South border, and by setting the robot’s

location in C according to its pose: Crobot = Ch,f(ϕ). The goal is projected into C

based on the compass heading of the goal relative to the robot and the distance

between flat

focusR and the goal on R
flat

. (14), derived in III-B, defines this

projection. Figure 8 depicts a typical search through C.

24

Figure 8. A path from the robot position to a goal located at the base

of a tree through the Cylindrical Planner’s occupancy grid. Light to

dark corresponds to low to high cost, respectively.

 A function is now derived that describes how elements outside of the

FOV in C should be updated for any combination of translation and rotation

that the robot executes on R
flat

.

Figure 9, Quantities used to compute the updating function for C.

 Let point Rpoint be a point in R that generates the cost information

stored at row n and column m of C when the robot is located at Rrobot. If the

robot is moved to a new location, R’robot � Rrobot, then Rpoint will subsequently

generate the cost information stored at row n’ and column m’ of the new

cylinder C’. Note that the Cn,m may not be equal to C’n’,m’, n may not be equal

25

to n’, and m may not be equal to m’. This is because the directions and

distances to Rpoint from Rrobot and R’robot may not be the same at the new

location as they were at the old location.

 When the FOV is not 2�, as is generally the case, this updating can be

simulated by solving for n’, m’, and C’n’,m’, given n, m, Cn,m, and the

movement of the robot between Rrobot and R’robot. Because C is a SWNES

mosaic (and assuming that any change in height can be ignored) the only

FRPSRQHQWV� RI�PRYHPHQW� WKDW� DIIHFW� WKHVH� FDOFXODWLRQV� DUH�ûE� DQG�ûN, the

robot’s relative displacement in the East and North directions, respectively.

Let h, ||a||, ||u||, !��and � have the same definitions as in (8) through (15) and

Figure 5. Let T be the robot’s translation on R
flat

.

22

ENT ∆+∆= (30)

 Let� " and "’ be the radial locations of R’robot and Rrobot, relative to

North, from the vantage point of Rrobot and R’robot, respectively.

 ()NE ∆∆= ,arctan2ς , (31)

 ()NE ∆−∆−= ,arctan' 2ς , (32)

 Let flat

pointR be the point on R
flat

 directly below Rpoint, and let � be the

angle on R
flat

 between the vector from Rrobot to R’robot and the vector from

Rrobot to flat

pointR

 ςπ
π

µ −−
−

=
p

m)1(2
, (33)

where p is the number of columns in C. Let dp be the distance between Rrobot

and flat

pointR , and let d’p be the distance between R’robot and flat

pointR .

26

 () 





 −+=






 −+= βρπβρπϑ

2
cos

2
cos

,

,

mn

camera
mnp

S

c
Sd (34)

 ()µcos2'
22

TddTd ppp −+= (35)

The function ()Sϑ is defined in (22). ()
mnS ,ϑ is the depth associated with

pixel (n,m) when the robot is at Rrobot, and ()flat

mnS ,ϑ is the depth associated with

the same pixel when the robot exists on a flat plane. dn,m is defined in (15),

and is a distance along R
flat

 associated with pixel (n,m) when the robot is at

Rrobot. Note that the assumptions of (15) are valid because C is cylindrical. n’

and m’ are computed as follows:





















+−+= −

pmn

vp

dd

dd
n

'
tan

2
tan

2

h
'

,

1π
β

u

a
 (36)

 ()() 12mod''
2

' +−+= πµςπ
π
p

m (37)

and then rounded to the nearest integer. �’ is the angle on R
flat

 between the

vector from R’robot to Rrobot and the vector from R’robot to flat

pointR . The sine and

cosine of �’ can be calculated as follows:

 () ()








= µµ sin

'
'sin

p

p

d

d
 (38)

 ()
p

pp

Td

ddT

'2

'
'cos

222 +−
=µ . (39)

Note that the relations �’ = arcsin(sin(�’)) and �’ = arccos(cos(�’)) do not hold

over the range 0 � �’ � ����7KHUHIRUH���’ must be calculated as follows:

27

()() ()
()() () ()

()() () () 0'sin 0'cos'sinarcsin'

0'sin 0'cos'sinarcsin'

0'cos'sinarcsin'

<∧<−−=
≥∧<−=

≥=

µµµπµ
µµµπµ

µµµ

if

if

if

 (40)

The use of ()
mnS ,ϑ in (34) implies that a second cylinder Q, containing the

depth values associated with C, must either be maintained separately or

calculated from C:

 ()
flat

mnmn

camera
mnmn

SC

c
SQ

,,

,, +
== ϑ (41)

Let Q and Q’ represent the depth value cylinder when the robot is located at

Rrobot and R’robot, respectively. Note that in practice it is easier to maintain Q

separately from C, instead of calculating it from C. However, if the latter

method is used, then the absolute value on the right hand side of (28) should

be relocated to (5), in order to insure that (41) is correct.

 When T=0 the updating functions for Q and C are defined respectively

Q
’
=Q and C

’
=C; otherwise, Q’ is populated by

2

2

,

',' '' p

mn

pv

mn d
d

dd
Q +










= , (42)

and C’ is populated by

 () 









−== −

flat

mnmn

cameramnmn
QQ

cQC
,,

','

1

','

11
'' ϑ , (43)

Q’n’,m’ cannot be calculated if d’p is inside the cylinder, and thus below the

cylindrical field of view. In that case, n’ will not exist as a row in Q’ or C’.

 A strategy must be defined for dealing with what happens when one

obstacle is occluded by another during translation, in which case more than

28

one point in Q may be mapped to Q’n’,m’. Generally, obstacles closer to the

robot represent more of a navigational hazard; therefore, it is advisable to

retain the minimum Q’n’,m’ value. As previously noted, it may be easier to

maintain Q instead of C. If this is done, then force values are calculated:

flat

mnmn

camarascalei
QQ

ccF
,,

11
1 −+= (44)

 Currently, it is computationally prohibitive to calculate this

transformation within the robot’s reaction time. Therefore, An alternative

memory-updating scheme is implemented by having C gradually forget

information outside of the robot’s FOV as a function of the distance that the

robot has traveled,

() ()













 ∆+∆−
=

forget

forget

d

NEd
CC

22

,0max'' , (45)

where dforget is the distance required to erase all rotational memory in a single

update [26]. In this scheme, no translational updating takes place, and the

values in C outside of the FOV will decay toward zero. dforget is manually

tuned to mimic the information loss observed in the translation scheme. Note

that dforget is also a function of the rate at which (45) is applied.

Section B, The Hierarchical Planner

 A Hierarchical Planner attempts to solve the path planning problem by

dividing it up into the parallel problems of global and local planning. The

local planner is charged with obstacle avoidance and navigation toward sub-

29

goals. Meanwhile, the global planner concerns itself with a coarse

representation of the entire world and returns appropriate sub-goals to the

local planner. Hierarchical Planners have been used in a variety of robot path

planning schemes [29], [30]. For instance, [31] models the global world as a

graph of connected nodes in which each node acts as the local map. [13] also

models the global world as a graph of connected nodes, but views the local

world in top-down Cartesian space. In [32], both the local and global planners

are versions of the top-down occupancy grid model. In standard Hierarchical

Cartesian Planners, the local cost-map is high resolution, fixed in size, and

remains centered on the robot; the global cost-map maintains a lower

resolution, expands with exploration, and remains fixed to some global frame

of reference.

 We implement a Hierarchical Planner that uses a top-down occupancy

grid and a Cylindrical Planner for its global and local planning components,

respectively. This configuration combines the local path planning strengths of

image based path planning—high resolution obstacle avoidance and

servoing—with the global strengths of the birds-eye view occupancy grid—

translational memory. Data is stored in the global planner’s occupancy grid, B,

as a projection of F onto R
flat

, and the resolution of B is 50 centimeters. Path

planning through B is accomplished via a version of the work minimization

A* search algorithm (4), where Di is the Euclidean distance between grid

locations in B multiplied by the resolution of B. Sub-goals are chosen to be 10

meters away from the robot.

30

CHAPTER V, EXPERIMENTS

 The three implementations of image based planning systems,

described in sections III-A , IV-A, and IV-B, respectively, are compared to a

baseline top-down planner on three courses in unstructured outdoor

environments. The Baseline Planner has an occupancy grid granularity of 50

centimeters and is nearly identical to the global half of the Hierarchical

Planner. All three image based systems use the O

iD distance metric (described

in section III-B). Courses 1, 2, and 3 are depicted in Figures 10, 11, and 12,

respectively. The actual paths that the robot took are overlaid on a top-down

occupancy grid map of the environment. For completeness of map

information, all maps were generated independently of the test runs by

teleoperation. The granularity of each occupancy grid is 50 centimeters.

Course 1 is a simple course that consists of randomly placed obstacles with

radii varying from 10 centimeters to 1 meter. Courses 2 and 3 are similar to

Course 1, except that an obstacle of 10 meter girth is added on Course 2, and

Course 3 contains two adjoining obstacles each 1 meter wide and

approximately 30 and 10 meters long, respectively. Low to high cost is

represented by light to dark, respectively.

31

Figure 10. Course 1: obstacles of small radii.

Figure 11. Course 2: an obstacle of 10 meter girth.

32

Figure 12. Course 3: two adjoining long thin obstacles.

 A version of the Hierarchical Planner using the
flat

R

iD distance metric

was also tested on course 3. The rout taken by this system is depicted in

Figure 13.

Figure 13.
flat

R

iD distance metric performance on Course 3.

33

CHAPTER VI, DISCUSSION AND RESULTS

 Path planning for robot navigation is a real-time system in which the

robot must be able to observe the world and react quickly enough to guarantee

safety and reliability. At the robot’s minimum speed (approximately 0.125

m/s), robust navigation requires that the robot perceive the world and react at

least every quarter meter, or 0.5 Hz. Ideally, it is desirable for the robot to

translate at a rate of 0.5 m/s or greater, which means the robot must plan at

least 2 Hz. Improving frame-rate beyond this is not unreasonable given state

of the art CPUs. Nonetheless, care is taken to limit the time complexity of the

algorithms, particularly the distance calculations. As noted in section III-B,

flat
R

iD can be calculated off-line, thus reducing the online distance calculation

to a table-lookup.

 In practice, it was found that the
flat

R

iD distance metric causes the path

to be extremely sensitive to noise. When noise occurs in an otherwise

traversable area, it creates a pseudo-obstacle that the planning system attempts

to avoid like any other high cost region.
flat

R

iD mandates that the cost

associated with traveling between neighboring grid locations decreases as a

function of occupancy grid row (Figure 14). Thus, the least expensive path

around an obstacle located in the far field will try to avoid the obstacle in the

near field—often by an immediate rotation. This would not be a problem in

the absence of noise. However, because pseudo-obstacles pop in and out of

existence, erratic behavior is induced by the planning system’s continuous

attempts to avoid new pseudo-obstacles (i.e. with immediate rotation after

34

immediate rotation). Figures 12 and 13 show, respectively, the performance of

the Hierarchical Planner using the O

iD and
flat

R

iD metrics on Course 3. The

route taken by the hierarchical planning system in Figure 12 is much smoother

than the one in Figure 13.

Figure 14. Distortion Ratio as a function of occupancy grid row

(percentage from bottom of image to horizon), where Distortion Ratio

is
flat

R
iD for vertical and horizontal neighbors divided by

flat
R
iD for the

bottom most vertical and horizontal neighbors, respectively (top). Note

that this is proportional to O
i

R
i DD

flat

. Close up of distortion ratio

(bottom).

 O

iD tends to distort R
flat

 distance, especially in the far field (Figure

14). However, O

iD works well in practice. By defining the distance between

neighbors to be invariant of grid location, it avoids the noise induced near-

field path corrections that were observed with
flat

R

iD . This is because paths are

penalized equally for near or far field detours, so the path is free to follow the

35

geodesic around an obstacle or pseudo-obstacle without making a significant

and immediate correction. Also, because the range of our stereo sensors is

effectively 15 meters, severe far-field distance distortion is somewhat

irrelevant. Note that in Figure 10 the distortion ratio is less than 2 for

approximately one third of the occupancy grid, where Distortion Ratio is

defined to be
flat

R

iD for vertical and horizontal neighbors divided by
flat

R

iD for

the bottom most vertical and horizontal neighbors, respectively. Because

O

iD is always 1 for horizontal and vertical neighbors, this is also proportional

to O

i

R

i DD
flat

.

 The experiments illustrated that the basic Image Planner is able to

navigate through simple courses, such as Course 1; however, it is not a robust

planning system. For instance, when Rgoal is not in the robot's FOV it cannot

be mapped into O. This will happen if the robot starts in such an orientation, is

close to the goal, or has rotated away from Rgoal in order to avoid an obstacle.

Consequently, the Image Planner fails unless some predefined course of

action is hard-coded into the system. The first case is solved by requiring the

robot to rotate in the direction of the goal upon start-up. The second case can

be ignored because it will only happen once the robot has completed its task.

The final case is non-trivial and plans of action must involve movement

containing both a translational component and a rotational component.

 Without both translation and rotation, the robot risks never finding a

path to the goal. Purely forward movement will carry the robot away from the

goal indefinitely, whereas movement in the reverse direction risks obstacle

36

collision. Pure rotation may induce oscillatory behavior, as the robot

alternately rotates away from the obstacle and then back toward the goal after

forgetting that the obstacle exists. The Image Planner was observed to display

this behavior on Courses 2 and 3, Figures 11 and 12, respectively—note that

each test was manually aborted after the robot oscillated for two minutes. A

naive procedure that translates some distance before allowing rotation in the

direction of the goal may perturb the system enough to overcome this

condition. However, this does not address the deeper problem at the heart of

rotational-oscillatory behavior—namely, the lack of rotational memory. The

rotational memory of the Cylindrical Planner allows it to remember the

obstacle's existence, even when the obstacle is outside the robot’s field of

view. Note that in Figure 11 the Cylindrical Planner navigates around the

obstacle to the goal.

 The Cylindrical Planner was able to find the goal in all three tests.

However, on Course 3 (Figure 12) it was the only planning system that opted

to travel around the lengthier of the two obstacles. We speculate that this

behavior would have degenerated into translational oscillation if the obstacle

had been longer. Consider the case of Figure 15, top. A goal is placed directly

North of the center of a long thin wall that runs East to West (e.g. the length

of the wall is 1km and the width of the wall is 1m). The robot starts South of

the center of the wall. At first, given the information in C, it will appear

possible to navigate around the wall in either direction. However, as the robot

moves toward one end of the wall, the goal will appear to move toward the

37

opposite end of the wall from the robot’s point of view (Figure 15, bottom).

Eventually, it will appear cheaper to reverse direction and attempt to reach the

goal by going around the opposite end of the wall. This will repeat each time

the robot travels a certain distance away from the goal in either direction.

Figure 15, Translational oscillation induced in the Cylindrical Planner by a

long thin wall. The initial path around the wall (top), and the path at a later

time (bottom).

 The only way to avoid this problem is to introduce some form of

global translational memory, such as a global 3D or 2D top-down Cartesian

Planner. Local versions of these planners do not suffice—they are, by

definition, only concerned with portions of the world near the robot and will

always be vulnerable to translational oscillation induced by obstacles larger

than their translational memory. The Hierarchical Planner, on the other hand,

will eventually find a way around a large obstacle—if one exists—with the

help of its global Cartesian Planner. However, solutions can still be

suboptimal. For example, the robot may backtrack many times as it explores

for a way around the wall [33]. This is observed in Figure 12 for both the

38

Baseline Planner and the Hierarchical Planner. This suboptimal behavior can

be described as translational quasi-oscillatory, and is related to (but not

identical to) the translational oscillatory problem previously addressed. Any

planning system that must make decisions based on limited information is

susceptible to quasi-oscillatory behavior because any currently optimal

solution may change as new information is discovered. Work has been done

on this complex global planning phenomenon by [34].

 If the system has sufficient prior knowledge of the domain (e.g. a

perfect map) then the planner is able to make piece-wise optimal decisions

that form a globally optimal decision. Highly structured environments, for

instance those encountered by autonomous highway driving algorithms, may

contain sufficient information to use a local planner in a global setting.

Similarly, the Cylindrical Planner is equipped to navigate through

environments similar to Courses 1 and 2 without the help of the Hierarchical

Planner.

39

CHAPTER VII, FUTURE WORK

 The high fidelity occupancy grid used in image space planning

provides a natural framework to include more sophisticated models about the

traversability of terrain. A natural extension to this work is to combine color

and texture models with stereo information to incorporate more environmental

knowledge, and allow for more robust path planning.

 One unaddressed limitation of the Cylindrical planning system is its

inability to plan behind obstacles that the robot cannot see over. This is a

direct result of the fact that the Image Planner only has the ability to store

complete information about two of the three dimensions that it uses.

Attempting to solve this problem by allowing sky traversal caused failure in

certain circumstances. A similar idea that may work is to artificially place low

cost regions at specific places in the map. For instance, setting the force

associated with a grid location to one if it happens to be in the same row that

the goal is projected into, and within a certain number of columns away from

the goal. This is similar to an idea from Applied Perception, Inc., a fellow

LAGR participant, who suggested allowing easy horizontal movement

everywhere in O, in order to reflect the fact that the robot may be able to go

behind things in the cost map. Interestingly, the
flat

R

iD distance required to

move to a horizontal neighbors is always much less than the
flat

R

iD distance

required to move to a vertical neighbor, given the same starting location. This

suggests that if the noise observed in our system could be reduced, then the

flat
R

iD metric may be a principled way to account for the possibility of

40

traversing behind obstacles.

 It is worth noting that humans, given a similar world view, are able to

use logic to reason about such things. For instance, they know that they can

probably traverse horizontally through a forest, but that they probably will not

be able to travel directly through a cliff face or a cement wall. Hence, It may

be possible to use supervised or simi-supervised machine learning to build

traversibility models of scenes in order to give the robot a similar knowledge

base.

 If a faster way of updating the part of the cylinder that is outside of the

robot’s FOV could be implemented, then it would allow the cost map of the

cylindrical model to be more robust during translation. It is also possible that

approximations to the full translational updating scheme could provide more

useful information than what is currently provided by exponentially forgetting

the part of the map that is outside of the robot’s FOV. Several possible

schemes include: assuming that all obstacles lie on two walls that are parallel

to the direction of robot translation, one on either side of the robot and both a

fixed distance away from the robot; adding an additional two walls, one in

front of the robot and another behind it, that are perpendicular to the first two

walls; and performing the entire translation at a limited disparity granularity—

thus allowing the offline pre-computation of updated cost values and their

corresponding locations.

41

CHAPTER VIII, CONCLUSIONS

 We have demonstrated the efficacy of using image based path

planning. However, We have also discovered that any robust path-planning

algorithm must address two environmental scenarios: those that lead to

rotational oscillation and those that lead to translational oscillation. The Image

Planner is susceptible to both, a limitation not shared by the traditional top-

down Cartesian Planners. We address these situations with a series of

extensions to the Image Planner. By augmenting the memory of the Image

Planner to include the world beyond the FOV, the Cylindrical Planner is

capable of overcoming rotational oscillations and reducing translational

oscillations. In general, the translational oscillation problem can only be

solved by a planner that maintains global translational memory. Although

planning in image space does not displace the Cartesian Planner, it does

relegate it to the more aptly suited function of global planning. Local planning

in image space is robust, and provides a simple framework for maintaining a

high resolution world-view. A Hierarchical Planner combines the strengths of

both systems and is able to plan a more natural path, which can then be

executed more fluidly.

 The end goal of these efforts is a principled interaction between

Cylindrical and Cartesian path planning. This is the first such successful

framework, and sets the stage for future research efforts.

42

REFERENCES

[1] D. Murray and C. Jennings, “Stereo vision based mapping and

navigation for mobile robots,” in Proc. of the IEEE Int. Conf. on

Robotics and Automation (ICRA ’97), New Mexico, pp. 1694-1699,

April 1998.

[2] W. van den Mark, F. Groen, and J. C. van den Heuvel, “Stereo based

navigation in unstructured environments,” at IEEE Instrumentation and

Measurement Technology Conference, Budapest, Hungary, 2001.

[3] A. Elfes, “Using occupancy grids for mobile robot perception and

navigation,” in IEEE Computer, pp. 46–57, June 1989.

[4] S. Kolski, D. Ferguson, M. Bellino and R. Siegwart, “Autonomous

driving in structured and unstructured environments,” Lausanne,

Switzerland & Pittsburgh, USA, in IEEE Intelligent Vehicles

Symposium, 2006.

[5] M. Herman, "Fast, three-dimensional, collision-free motion planning" in

IEEE Proc. Int. Conf. Robotics Automat., 2, pp. 1056-1063, April 1986.

[6] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” in IEEE Trans. On System

Science and Cybernetics SSC-4, 2, pp. 100-107, July 1968.

[7] E. Dijkstra, “A note on two problems in connection with graphs,” in

Numer. Math. 1, pp. 269-271, 1959.

[8] G. Krishnaswamy and A. Stentz, “Resolution independent grid-based

path planning,” Tech. Report CMU-RI-TR-95-08, Robotics Institute,

Carnegie Mellon University, April 1995, unpublished.

[9] Anthony Stentz, “The focussed D* algorithm for real-time replanning,”

in Proc. of the Int. Joint Conf. on Artificial Intelligence (IJCAI), 1995.

[10] O. Khatib, “Real-Time obstacle avoidance for manipulators and mobile

robots,” in The Int. Journal of Robotics Research, 5(1), pp. 90-98,

Spring 1986.

43

[11] Y. Koren, J. Borenstein, “Potential field methods and their inherent

limitations for mobile robot navigation,” in Proc. IEEE Int. Conf.

Robotics and Automation, 1991.

[12] D. Murray and J. Little, “Using real-time stereo vision for mobile robot

navigation,” in Proc. of the IEEE Workshop on Perception for Mobile

Agents, Santa Barbara, CA, June 1998.

[13] M. Sugiyama, Y. Kawano, M. Niizuma, M. Takagaki, M. Tomizawa,

and S. Degawa, “Navigation system for an autonomous vehicle with

hierarchical map and planner,” in Proc. of the Intelligent Vehicles '94

Symposium, pp. 50 – 55, 24-26, Oct. 1994.

[14] S. Tsugawa, T. Yatabe, T. Hirose, and S. Matsumoto, “An automobile

with artificial intelligence,” in Proc. Sixth Int Joint Conf. Artificial

Intelligence, pp. 893-895, 1979.

[15] C. Thorpe, M. H. Herbert, T. Kanade, and S. A. Shafer, “Vision and

navigation for the Carnegie-Mellon Navlab,” in IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 10, no. 3, pp. 362-372, May

1988.

[16] D. Mateus, G. Avina, and M. Devy, “Robot visual navigation in semi-

structured outdoor environments,” in ICRA, 2005.

[17] D.A. Pomerleau, “ALVINN: An autonomous land vehicle in a neural

network,” Technical Report CMU-CS-89-107, Carnegie Mellon Univ.,

1989, unpublished.

[18] T.M. Jochem, D.A. Pomerleau, and C.E. Thorpe, “Vision-based neural

network road and intersection detection and traversal,” in Proc. IEEE

Conf. Intelligent Robots and Systems, vol. 3, pp. 344-349, Aug. 1995.

[19] N. Cowan, I. Weingarten, and D. Koditschek, “Visual servoing via

navigation functions,” in IEEE Transactions on Robotics and

Automation, 18(4), pp. 521-533, 2002.

[20] J. Feddema and O. Mitchell, “Vision-guided servoing with feature-based

trajectory generation,” in IEEE Trans. Robot. Automat., vol. 5, pp. 691–

700, Oct. 1989.

44

[21] H. Zhang and J. Ostrowski, “Visual motion planning for mobile robots,”

in IEEE Trans. Robot. Automat., vol. 18, pp. 199–208, April 2002.

[22] R. Vidal, O. Shakernia, and S. Sastry, “Formation control of

nonholonomic mobile robots omnidirectional visual servoing and motion

segmentation,” in Proc. IEEE Conf. Robotics and Automation, pp. 584–

589, 2003.

[23] N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor, “Omni-directional

vision for robot navigation,” at IEEE Workshop on Omnidirectional

Vision (OMNIVIS’00), Hilton Head, South Carolina, June 2000.

[24] Y. Matsumoto, K. Sakai, M. Inaba, H. Inoue, “View-based approach to

robot navigation,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS 2000), vol 3, pp. 1702 – 1708.

[25] P. Gaussier, C. Joulain, S. Zrehen, J. P. Blanquet, A. Revel, “Visual

navigation in an open environment without map,” in Proc. of the

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS’97), Grenoble, pp. 545-550, 1997.

[26] A. Kelly. “Adaptive perception for autonomous vehicles,” Tech. Report

CMU-RI-TR-94-18. The Robotics Institute, Carnegie Mellon University,

1994, unpublished.

[27] A. Kelly. “Mobile robot localization from large-scale appearance

mosaics,” in Int. Journal of Robotics Research, 19, pp. 1104–1125,

2000.

[28] A. Argyros, K. E. Bekris, S. C. Orphanoudakis, and L. E. Kavraki,

“Robot homing by exploiting panoramic vision,” in Autonomous Robots,

19(1), pp. 7–25, 2005.

[29] S. Chen, “A spherical model for navigation and spatial reasoning,” 1990.

[30] B. H. Krogh and C. E. Thorpe, “Integrated path planning and dynamic

steering control for autonomous vehicles,” in Proc. IEEE Int. Conf.

Robotics and Automation, San Francisco, CA, pp. 1664–1669, 1986.

45

[31] J. Hong, X. Tan, B. Pinette, R. Weiss, and E. M. Riseman, “Image-based

homing,” in Proc. IEEE Int. Conf. on Robotics and Automation, New

York, pp. 620–625, 1991.

[32] E. Gat, M. Slack, D.P. Miller and R.J. Firby, “Path planning and

execution monitoring for a Planetary rover,” in IEEE Int. Conference on

Robotics and Automation, Cincinnati, USA, 1990.

[33] K. N. Kutulakos, V. J. Lumelsky, and C. R. Dyer, “Vision guided

exploration: A step toward general motion planning in three

dimensions,” in Proc. IEEE Robotics Automat. Conf., pp. 289-296,

1993.

[34] B. Nabbe, “Extending the path-planning horizon,” Ph.D. dissertation,

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, July

2005.

