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Abstract We are interested in finding solutions to the multi-robothpalianning
problem that have guarantees on completeness, are rolmashtounication failure,
and incorporate varying team size. In this paper we pregsemigorithm that ad-
dresses the complete multi-robot path-planning problemnfiwo different angles.
First, dynamic teams are used to minimize computationalptexity per robot and
maximize communication bandwidth between team-memberr&l, each teamis
formed into a distributed computer that utilizes surplusiomunication bandwidth
to help achieve better solution quality and to speed-upeammsiss time. The proposed
algorithm is evaluated in three real-world experiments iramote dynamic team
formation. In the first experiment, a five mobile robot teaamgla set of compatible
paths through an office environment while communicatiodityua disrupted using
atin-can Faraday cage. Results show that the distribueaeivork of the proposed
algorithm drastically speeds-up computation, even wherkegtdoss is as high as
97%. In the second and third experiments, four robots aréogeg in a network
of three building wings connected by a common room. Resiiltselatter exper-
iments emphasize a need for dynamic team algorithms thgudasiously choose
which subset of the original problem a particular dynamanteshould solve.

1 Introduction

Autonomous navigation is a basic primitive of autonomousbiteorobots and en-
ables a large number of higher-level tasks that are relémasdmmercial and con-
sumer settings. In general, theulti-robot navigation problenis to find a coordi-
nated set of collision-free paths for all robots moving with common area&Cen-
tralized multi-robot navigation algorithms provide the best congatess guarantees
of any tool in the multi-robot planning toolbox; howeverethare also the most ex-
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pensive to use. In general, multi-robot navigation is ataimse of the piano mover’s
problem—for which complete solutions have been shown to lperantially dif-
ficult to calculate in the number of robots involved (Schwarhd Sharir (1985)).
While this result is sobering, our work attempts to push thaté of what com-
plete multi-robot navigation algorithms can achieve. Tikisnportant because the
only alternative is to use less expensive incomplete atlyos that may fail to find
a valid solution when one exists or lead to dead-lock. Thiat, saany incomplete
methods have proven to be extremely useful for all but thet miosllenging navi-
gation instances, and we advocate using them whenevebposSur work is most
applicable to the difficult situations in which less expgasihethods fail.

We investigate a probabilistically complete distributedltirrobot navigation al-
gorithm that enables a team of robots to collaborativelyesdheir mutual navi-
gation problem, while also being robust to the partial comitation failure that
occurs in real-world environments. Due to real-world eowimental constraints on
wireless network quality, we are interested in algorithire &xploit the utility of
unreliable communication channels, but also take full athge of high-quality net-
works. In previous work (Otte and Correll (2010)) we proptise Any-Com in-
termediate solution sharing algorith@ny-Com ISS). The basic idea is to paral-
lelize a probabilistically complete any-time random-tedgorithm to distribute the
computational load among the entire robotic team. Togetherteam finds a sub-
optimal solution as quickly as possible, then refines thattiem subject to both
communication and time constraints. The idea is inspiregrbyious work on any-
time algorithms by Boddy and Dean (1989) and Ferguson amdZS{2006).

As the name suggests, a key element of Any-Com ISS is thenghafinterme-
diate solutions among team members, where intermediati@ew are the asymp-
totically optimal solutions found by different robots amié progresses. Robots that
receive ISS data are able to prune their local portions ofjtbbal search tree to
reflect the best solution known to the sending robot (and,¥bgnsion, all robots
the sender has received messages from, etc.). Aggresaiviagifocuses the team’s
remaining effort on finding even better solutions. Robotengng ISS messages are
also able to directly improve the best solutions known tostreding robots.

This paper extends our previous work on Any-Com ISS by givirige ability
to use dynamic teams similar to those described by (Clark é€093a)). Any-
Com ISS and dynamic teams compliment each other for a nunfilbeasons. First,
Any-Com ISS assumes that robots working on the same probilerwighin com-
munication range, and dynamic teams can be used to enssireotidition is met.
Second, dynamic teams provide a graceful way to handle stewvry of previously
unknown robots; once discovered, Any-Com ISS providesadrmork to harness
their computational power. Third, and most importantlgttare both designed to
attack the centralized multi-robot problem—albeit fronfeliént angles. By com-
bining the two ideas, we hope to create a more resilient dlgorthat inherits the
positive aspects of both.

Previous work has focused on the necessity of dynamic tearagallimited
communication. In Clark et al (2003a) team formation is segm positive event
and allowed to occur as soon as two robots can communicaiisThecause lim-
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ited communication necessarily hinders team formation @negtents information
exchange. In contrast, we believe aggressive team formatierlooks the algo-
rithm’s natural ability to break an> 2 robot problem into two separate problems
of sizen andm, wheren+m=r. Let the size of the workspace be denotedt is
much easier for two teams to sol@c™) andO(c") complex problems in parallel,
than for one large team to solve &tc"™™) problem. Therefore, we believe teams
should be kept as small as possible, and only add robots tana ifedoing so is
necessary to avoid collisions and maintain completenessagtees.

In Section 4 we perform three experiments. The first evatupggformance of
a five robot team using Any-Com ISS in an environment deliledyanade hostile
to communication with tin-can Faraday cages. Experimemtsand three evaluate
the performance of Dynamic Team Any-Com ISS when used in éwmgrHall, a
large three-wing residence hall on the University of Callarat Boulder campus.
The rest of this paper is organized as follows: related wogkésented in Section 2,
discussion of results is given in Section 5, and conclusiasirawn in Section 6.

2 Related Work

There exists a large body of literature on the multi-robotig@tion problem. Pre-
vious approaches range from simple reactive solutionslpdaordinated, central-
ized solutions. In theocktail partymodel all robots are ignorant of other agents’
intentions (Lumelsky and Harinarayan (1997)). Each agexihtains its own goals,
world-view, and navigation function. Other robots are \eéelas obstacles, and the
control loop alternates between sensing, planning, ancement. If all robots use
the same algorithm, then the estimated movement of othetgalan be refined (van
den Berg et al (2009)). Cocktail party algorithms are inctategp(e.g. fail when two
robots must move in opposite directions through a narrowidan), but they are
popular due to their simplicity, scalability, and commuation free architecture.

Often a set ofraffic rulesis used to facilitate navigation similar to the way auto-
mobiles (theoretically) interact via traffic laws (Alamiat(1998); Kato et al (1992);
Ryan (2008)). These methods assume each robot knows tise agiees to follow
them, and can sense required environmental cues (e.gigtispl Traffic rules are
simple, distributed, and scalable. However, they assuglgyhstructured environ-
ments, and may contain rules that prohibit optimal solifsom being found (e.g.
taking a short-cut by going the wrong way down a one-way tree

Prioritized planningforces robots to respect the movement constraints imposed
by higher priority robots (Buckley (1989); Erdmann and Lina&erez (1987); War-
ren (1990)). The highest priority robot plans first, thenrtegt-highest, and so forth.
On-line versions exist that alternate sensing, planning, movement (Clark and
Rock (2001); Hada and Takasa (2001); Yeung and Bekey (198idyitized meth-
ods are incomplete—higher priority robots follow optimalraar-optimal trajec-
tories, but lower priority robots may be unable to find a dolutA similar idea
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has also been used to periodically guarantee line-of-sighimunication while per-
forming coverage (Hollinger and Singh, 2010).

Decoupled planningvorks in two phases (Aronov et al (1998); Guo and Parker
(2002); Kant and Zuker (1984); Leroy et al (1999); Simeonl€2@02)). Robots
calculate their own path to the goal in phase 1, while igrgpiaii other robots.
Space-time positions along these paths are then calculatpdase 2. Priorities
may be assigned for the phase 2 calculation (Asarm and St(i8i@7); Bennewitz
et al (2001)), and special cases exist for two robots (Led.ard1987); O’'Donnell
and Lozano-Perez (1989)). Phase 1 is completely distibeithut phase 2 must be
performed on a single agent (or in parallel on each robotgoDgled planning can
be distance-optimal but is incomplete because paths aeendieed after phase 1,
and may systemically conflict (Sanchez and Latombe (2002b))

In Centralized planningll robots are viewed as individual pieces of a single
composite robot. Paths are calculated in the resulting-tligtensional configura-
tion space (Bonert et al (2000); Clark et al (2003b); Evesedl (1994); Parsons and
Canny (1990); Ramanathan and Alagar (1985); Sanchez aminbat (2002a,b);
Schwartz and Sharir (1985); Xidias and Aspragathos (2008p high-dimensional
solution is then projected into the relevant subspace fcn ezbot. Centralized plan-
ning is theoretically optimal and complete, but practidgbathms are usually prob-
abilistically or resolution complete/optimal. Centralizplanning provides the best
guarantees of any multi-robot planning method, but it i® dalee most computa-
tionally complex. Dynamic teams have previously been usecbnjunction with
centralized algorithms by Clark et al (2003a).

With respect to path-planning, previous work in centralizgorithms is the
most closely related work to our own, but requires each agecdlculate the entire
solution completely on its own. In contrast, our Intermégli@olution Sharing idea
leverages the distributed-computing power of the robetiert to help find better so-
lutions more quickly. Non-centralized approaches arenmaete, while Any-Com
ISS is probabilistically complete. Previous work has natsidered what happens
when communication deteriorates, which is a main contigbubdf our work.

With respect to dynamic team formation, the most closelstesl work is Clark
et al (2003a). In that work, the authors form teams as soomwlasts are within
communication range. In our work, we delay team creatioil itris necessitated
by conflicting solutions. By keeping team sizes small, weehtgp minimize the
complexity of the problems faced by the individual teams.alé® perform experi-
ments in a much larger workspace that subjects robots talgctet, not simulated)
wireless communication disturbances.

3 Methodology

For path planning we use the Any-Com ISS algorithm for mudbet navigation
(Otte and Correll (2010)). This is a modified Any-Time Rapidxploring Ran-
dom Tree (RRT) algorithm with different random seeds peotdleading to ap-
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proximately parallel search), and aggressive pruning adllsearch-trees based on
the best intermediate solution known to any robot. The Ugithey random-tree al-
gorithm is similar to RRT* (Karaman and Frazzoli (2010)) hat it judiciously
chooses how to attach new nodes to the tree in order to elientha winding and
wandering normally associated with RRT.

The ongoing information exchange between robots duringldyening phase is
also used to jump-start the consensus building that is sapeso ensure all robots
in a particular team use the same final solution. Successfuhwnications help
to find better solutions and agreements more quickly, whisuacessful commu-
nications do not hinder the eventual discovery of a soldiéigreement. In practice,
robots must fall-back to using an incomplete method if comication totally fails
(e.g., after a period of communication black-out).

In this paper we extend Any-com ISS to incorporate dynamaomte of robots.
Messages passed between robots are modified to include:

List of all members in the sender’s teastéam where the sending robot &
Start and goal of the sender’s team

Current planning epochE; of each robot in the sender’s team

Current locatiors.l; of each robot

In addition to the usual ISS data:

Best solutiors.sIn currently known to the sender (for the sender’s problem)
Best solution’s lengtls.bstin

ID of the robot that generatexbstin

List of robots that have submitted a final solution

List of robots that suppogsin

Robots send messages that reflect their most current vielveoflbbal problem
state. This means that each robot is responsible for adtietf to the appropri-
ate lists in its outgoing messages. All messages are serg ti® User Datagram
Protocol (UDP), which is a connection-less protocol thapdrmessages when com-
munication fails. Dropping old messages helps keep netdat current.

Dynamic Team Any-Com ISS is outlined in FigurelD. is the global identifica-
tion number of the local robot. Each robot starts in its ovamteand attempts to find
a path to the goalfynamicTeamAnyComISS), lines 1 and 5, respectivelyst is
a flag used to indicate when the random tree should be restueto a change in
the planning problem (lines 4, BRandomTreg() attempts to find a solution to the
current problem using the algorithm described in Otte ana&llq2010); it returns
successfully after the team has found and agreed upon @osplat unsuccessfully
if rst = true. The subroutind-ollowPath() causes a robot to follow its projection
of the global solution (line 7) anfBtopRobot() causes a robot to halt (line 9).

Robots periodically broadcast their best known solutiagmatew (Messaging),
line 12).rteamandteamare the sets of teammates of rolband the local robot,
respectivelyDist(l,,lp) returns the minimum distance between roba@ndb in
the workspace (line 14 onflict(a.sIn, b.sIn) returns true if the two solutiorssin
andb.sIn conflict (line 14). Teams are combined if their best interratdor final
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DynamicTeamAnyComISS) Messaging)
1: addID toteam 1: if message from € teamand r.E; > E; then

2: on a separate process 2 if r.teams# teamthen
Messaging) at ratew 3 for Vas.t.acrteama¢ teamdo
3: for forever do 4: adda to team
4: rst = false 5: Ep=Ep+1
5: RandomTreg() 6 rst =true
6: if not rst then 7 for V't € teamdo
7 FollowPath() 8: E: = max(E,r.E)
8: else 9: if r.bstin< bstinthen
9: StopRobot) 10: addr.sInto local search-tree
11: bstin=r.bstin

12: broadcast messages
13: else ifmessage from ¢ teamthen

14: if ID € r.teamor (Conflict(r.sIn,sIn) and
Ja e r.team Jb € teams.t. Dist(la,lp) < 0) then
15: for Vt s.t.t e rteamt ¢ teamdo
16: addt toteam
17: Ep=Ep+1
18: rst = true

Fig. 1: Dynamic Team Any-Com ISS (left), and messaging sutime (right).

solutions interfere with each other and robots creatitigifong those solutions are
closer than a predefined threshdldlines 2-6 and 14-18)&, is an integer that is
incremented every time robot problem changes. This is done to ensure outdated
messages pertaining to old planning problems are ignareestinand bstin are

the lengths of the best intermediate solutions known totrolamd the local robot,
respectively. If a message is received with a better saiutioen that solution is
added to the local tree (lines 9-11).

There are a number of reasons to delay team formation as fopgsaible. First,
complete multi-robot navigation is exponentially compiesthe number of robots,
so keeping teams small minimizes the problem complexitytegids to find solu-
tions more quickly. Second, although any-com ISS is théaky robust to poor
communication, it cannot work when communication compyefls. Good com-
munication also leads to improved performance. Assumimgnaonication is gen-
erally better at closer range, forming teams such that testesyare near each other
reduces the chance of total communication failure.

Even when two teamA& andB are in conflict, we delay team combination until
a robot inAis closer thard to a robot inB. This is because there may exist another
robot/teanC ¢ (AU B) initially beyond communication range, but that eventually
joins A or B and forces them to re-plan. Thus, the “conflicting” solutwnA or
B may either become invalid or cease to be in conflict befoteeeiteam actually
reaches thé vs.B conflict. In contrast, ifA andB are in conflictandtwo robots are
physically near each other, then the chances of collisiegexater, and we combine
the teams.
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Any-Com ISS is probabilistically complete, and assumesalbts are within
communication range of each other. lrebe the minimum distance for robots to
detect a conflict and safely stop without colliding, meaduretween robot centers.

Theorem 1: Dynamic Team Any-Com ISS is probabilistically completeafoy
d such that r< & < o, assuming a finite number of robots and all robots are within
communication range.

Proof: When robots in conflicting teams become closer tBatheir teams are
combined. Teams are never uncombined. Teams continuenpmtave, and com-
bine until solutions are found that do not result in furthembination. The latter
will happen in two cases:

1. All robots belong to a single team—which is the same as usinmgCom ISS.

2. No conflicting teams ever get closer tha&r-so all remaining teams can effec-
tively ignore each other. This is the same as each team éhdilly using Any-
Com ISS.

Either (1) or (2) must happen since the number of robots itefifi either case, the
problem is reduced to running Any-Com ISS, which is probstidially complete.
O

4 Experiments

We use the Prairiedog robotic platform (Figure 2, right)bBis run the ROS oper-
ating system, localize using the Hagisonic Stargazer, am@éguipped with a map
of the environment (Figure 2-left and Figure 4). Robots exge data using IEEE
802.11g wireless in ad-hoc mode. The target speed is se? to€ters per second.

4.1 Faraday Cage Experiment

In this experiment five robots plan paths through an officérenment while the
wireless channel is systematically disturbed by shieldhgy RF system using a
tin-can Faraday cage. We expect the imperfect Faraday oagjgrtificantly disrupt
communication—but not completely prohibit it. Statistice aollected on the actual
solution quality and consensus time as a function of thectfie packet throughput.
Solution quality is measured in terms of the maximum timedeldor any robot,
and consensus time is defined as the time after planning stapshe entire team
agrees on a single solution.

Any-Com ISS is compared to a client-server method—hendefeferred to as
baseline While Any-Com ISS uses the entire team for distributed cotammon,
baseline calculates its solution on a single agent and ttsribdites it to the other
robots. Simulations in our previous work have predicted #rgy-Com ISS should
outperform baseline, even given packet-loss rates as ki§h% (Otte and Correll
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Fig. 2: Left: 5 robots in an office environment and the resgltpaths. Right:
Prairiedog platform. Each robot is equipped with an indemalization system, a
netbook and IEEE 802.11g wireless communication.
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Fig. 3: Faraday cage experiment results. Crosses and staespond to the effec-
tive, measured packet loss in the environment. Error-baoe sneans and standard
deviations over 40 simulations assuming Poisson disgtbpackage loss.

(2010)). However, the theoretical model used for simutatissumes that commu-
nication quality is Poisson distributed, and cannot actéomall real-world com-
munication disturbances. This experiment is designedsioAay-Com ISS under
harsh communication constraints in a real-world environtyend either validate or
refute the earlier simulated predictions.

Experimental results are depicted in Figure 3, along wittdpmtions from the
theoretical simulations. The real data are depicted aseséstars. The theoretical
data are shown as circles and error bars (representing melastandard deviation
over 40 simulations, respectively, per a particular drafg). Note, the vertical ap-
pearance of the data-points at 1, 1/2, and 1/3 is an artifattteolow number of
messages sent by the baseline approach and caused by exgsnivhere solutions
were successfully distributed on the first, second, and thitempts, respectively.



Any-Com Multi-Robot Path-Planning with Dynamic Teams 9

Fig. 4: Andrews Hall (gray and white), with the polygon olz¢amap (red), and
Conflicting solutions found when robot team sizes = 1 (blaathg). Each robot
plans from its current location (blue) to a goal locatiore@).

30

meters 40
50 50

meters

Fig. 5: Actual robot paths vs. time (thick colored lines)daheir projections on
the free-space of Andrews Hall (thin colored lines and gregpectively). Time 0
corresponds to the start of movement. Blue successfullghesathe goal, but the
experiment is aborted when the red + black + pink team is entabfiind a solution
after 10 minutes. Note, only the first 5 minutes of the expenitrare plotted.

4.2 Large Andrews Hall Experiment

In this experiment we deploy four robots in Andrews Hall, ey&abuilding on the
University of Colorado at Boulder campus with a challendingr-plan that empha-
sizes team formation (see Figure 4). Two robots start in e&t¢he east and west
wings of the building, respectively. Robots are assignedtéisk of trading places
with a robot in the opposite wing. As discussed in the previeection, robots ini-
tially plan a path to the goal for themselves, then form latgams and re-plan if
they encounter other robots/teams who's paths conflict thighr own. Team forma-
tion distance) is set to 3 meters.

We performed 5 runs of the experiment and observe failureadigp failure in
all runs. That is, never did all four robots successfullyctetheir goals in a single
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Fig. 6: Workspace is limited to the large common room. Actolbt paths vs. time
(thick colored lines), and their projections on the freaesp(thin colored lines and
gray, respectively). Time 0 corresponds to the start of mmar. The resulting robot
paths are plotted vs. time (thick colored paths), along witir projections on the
free-space (colored paths and gray, respectively).

run. We postpone a full discussion of this result until thetrsection; however, the
failure is due to the computational complexity of a large kepace combined with
large dynamic team size. Planning through the entire raselgall is too complex
a problem for teams of more than two robots to handle in angomgble amount of
time, and the design of the building makes it unlikely that@ots will reach their
goals without forming teams of size three or four. Over ak fiuns, the average
observed communication quality between any two memberbetame team is
60.69% with a standard deviation of 22.64%—so communicajigadity is not to
blame for the team’s repeated failure to find a solution.

Figure 5 illustrates robot location vs. time from a typicah of the experiment.
The red robot catches up to the black robot and they form ardimteam in the
east wing of the building (the left wing of the plot). Beforedrand black discover
a 2-robot solution, the pink robot joins their team. The hiésg 3 robot team is
unable to find an initial solution after planning for 10 miesitand the experiment
is halted. In this run, blue is the only robot able to sucaghsfeach its goal.

4.3 Small Andrews Hall Experiment

This experiment is similar to the previous one, except that4 robots start in lo-
cations as they might enter the large common room in the cehtee dormitory.
From the combined team’s point of view, the workspace istéohito include only

the common room. Als@ is increased to 10 meters so the robots are able to quickly

form one large team when their solutions conflict. We perfa@muns, and observe
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Table 1: Small Andrews Hall Experiment Statistics, 10 ruiith w robots

mearjstandard deviatign
In-team communication quality 67.47% 26.68%
Time to first solution (seconds 14.24 9.55
First solution length (meters) 46.59 4.30
Final solution length (meters) 38.02 3.27
Actual distance traveled (meters) 44.88 7.80

that all robots successfully reach their goals in every figure 6 depicts robot
locations vs. time for a typical run. The mean and standavihtien of observed

statistics over all 10 runs are displayed in Table 1. Satukmgth is measured as
the sum of all individual path lengths. The mean measuremiie robots actu-
ally traveled is greater than the mean final solution lengid t small pose jumps
between localization tags and temporary localizationremourred between global
localization updates during rotation.

5 Discussion of Results

In the Faraday cage experiment, Any-Com ISS out-performddseline method in
terms of solution quality (i.e., path-time-to-goal). Thetmethods are similar with
respect to agreement time, except that Any-Com has a lowedatd deviation—
which we attribute to early consensus building during thenping phase. Basic
trends in the experimental results are similar to thoseigted by the theoretical
simulations. However, in practice, we observe that agre¢tiaes are greater than
those predicted by the theoretical model. We believe thdsigsto the fact that wire-
less communication is not Poisson distributed in the realdvaVe also find that
Any-Com ISS can drastically speed up computation, evendkgialoss is as high
as 97%. In other words the team is able to act as an effectbtghiited computer
with only 3% of the messages getting through.

In the large Andrews Hall experiment we observe that the gardition space
of teams involving three or more robots is so large that tleblem becomes in-
tractable. This happens despite the distributed compptimger of the robotic team
using Any-Com ISS, and our efforts to delay team formatiamd(¢hus problem
complexity) as much as possible. The observation that-tetien packet loss was
less than 40%, on average, suggests that the team’s diffioufinding a solution
was due to problem complexity and not poor communicatioiis fésult is interest-
ing because it shows that dynamic team formation can leadddark and failure
because it forces teams to deal with the worst-case contplefkihe problem. In
contrast, the small Andrews hall experiment shows thatisgla reduced problem
is well within the computational power of a 4 robot team. Téhesntrasting results
highlight the need for new dynamic team algorithms thattlianieam’s workspace
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to the minimum subset of the environment required to sokvedmmunal planning
problem.

Assume there are two teams of sizandm, respectively, that have conflicting
solutions. If we desire to find a complete solution to the cioad problem, then
a larger combined team must be formed (to ensure conflictbgts are aware of
each-others’ intentions, and thus avoid each other whemweasakition is planned).
However, chances are good that the two smaller solutions amiflict in a small
subspace of the original workspace. Let the complexity efghbspace in which
they conflict be denotesl Note thats < ¢, wherec is the complexity of the original
problem. Thus, solving the sub-problem is o@y(s/c)"™™) < 1 times as hard
as solving the original problem, and a®ecomes small relative tg the relative
difficulty of the sub-problem approaches 0. Therefore, ikesasense to have the
team focus on re-planning its solution for only the subs#tebriginal problem that
is in conflict. This can be achieved by having each team reit&ivalid portions of
their old solutions, while jointly finding a solution to thembined problem through
the conflicting subspace—much as shown in Figure 6. The netgrajections of
the combined solution can then be sandwiched between tiokevals of each team’s
original plan. Individual robots can even work on solving tombined sub-problem
en-route to their starting locations for it.

One reason we already use dynamic teams is because theyraliots to solve
less complex problems in parallel, graduating to more cemptoblems only when
necessary. It seems reasonable that we extend the existingidnality of dynamic
team formation to include tractable sub-problem selectisnwvell. We hope to ex-
plore these ideas in future work. Despite all precautiokerialuring dynamic team
formation, in a worst-case scenario all robots may still apdas part of a single
team that must plan through the entire environment. Whenrgotgd with this
worst-case scenario, teams may be unable to find a reasawbteon, and may
still need to fall-back to using an incomplete method.

6 Conclusions

We experimentally evaluate a distributed centralized imakiot path-planning al-
gorithm called Dynamic Team Any-Com ISS. Each robot startssiown team, and
teams are joined if their individual solutions conflict. Coiming teams based on
path conflicts allows non-conflicting teams to solve protdeireduced complexity
in parallel. Within a particular team, distributed comgiata utilizes the computing
potential of all team-members to find better solutions marieldy.

In our first experiment, we intentionally disrupt communica using a tin-can
Faraday cage and find that Any-Com ISS functions well degatket loss rates
as high as 97%. This result validates theoretical resultsitdd from simulation,
and is important because it shows that a robotic team carifumas an effective
distributed computer despite poor communication.



Any-Com Multi-Robot Path-Planning with Dynamic Teams 13

In further experiments we evaluate Dynamic Team Any-Com 88 large,
complex, indoor environment. When instructed to swap pl&oes one end of the
building to the other, robots succeed in forming teams #fieey discover each other.
However, the large hyper-volume of the team’s configurasipace prohibits teams
of three or more robots from finding a solution within any usefmount of time.
In contrast, teams of four robots are able to solve the sirhiiasmaller problem of
trading places across a common room located in the centke diilding—a likely
place for individually planned paths from the previous ekpent to conflict.

Although computational complexity of centralized algbnits is a known theo-
retical issue, we show experimentally that it can cause mhyoméeam formation to
trigger grid-lock and failure. This illustrates the impamte of algorithms for choos-
ing appropriate sub-problems for dynamic teams to solveb®lieve that dynamic
teams operating in large environments should attempt teesible smallest sub-
problems necessary to avoid collision. For example, byritathie combined team
plan only from one side of a conflict region to the other, aralileg navigation to
and from that area up to the individual robots or smaller ®dbespite the expo-
nential complexity of complete multi-robot problems, thigategy is advantageous
because it decreases the size of the base to which the expenaised.

Our work on Dynamic Team Any-Com ISS attempts to extend the sf prob-
lems for which a complete solution can be calculated. Byydieggteam formation as
long as possible, dynamic teams attempt to minimize the t®xtp of the problem
required to be solved by any particular team. When a team neuiirined, Any-
Com ISS divides the effort of computing the members’ comnaaten among all
robots that solution will benefit.
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