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Abstract We are interested in finding solutions to the multi-robot path-planning
problem that have guarantees on completeness, are robust tocommunication failure,
and incorporate varying team size. In this paper we present an algorithm that ad-
dresses the complete multi-robot path-planning problem from two different angles.
First, dynamic teams are used to minimize computational complexity per robot and
maximize communication bandwidth between team-members. Second, each team is
formed into a distributed computer that utilizes surplus communication bandwidth
to help achieve better solution quality and to speed-up consensus time. The proposed
algorithm is evaluated in three real-world experiments that promote dynamic team
formation. In the first experiment, a five mobile robot team plans a set of compatible
paths through an office environment while communication quality is disrupted using
a tin-can Faraday cage. Results show that the distributed framework of the proposed
algorithm drastically speeds-up computation, even when packet loss is as high as
97%. In the second and third experiments, four robots are deployed in a network
of three building wings connected by a common room. Results of the latter exper-
iments emphasize a need for dynamic team algorithms that canjudiciously choose
which subset of the original problem a particular dynamic team should solve.

1 Introduction

Autonomous navigation is a basic primitive of autonomous mobile robots and en-
ables a large number of higher-level tasks that are relevantin commercial and con-
sumer settings. In general, themulti-robot navigation problemis to find a coordi-
nated set of collision-free paths for all robots moving within a common area.Cen-
tralizedmulti-robot navigation algorithms provide the best completeness guarantees
of any tool in the multi-robot planning toolbox; however, they are also the most ex-
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pensive to use. In general, multi-robot navigation is an instance of the piano mover’s
problem—for which complete solutions have been shown to be exponentially dif-
ficult to calculate in the number of robots involved (Schwartz and Sharir (1985)).
While this result is sobering, our work attempts to push the limits of what com-
plete multi-robot navigation algorithms can achieve. Thisis important because the
only alternative is to use less expensive incomplete algorithms that may fail to find
a valid solution when one exists or lead to dead-lock. That said, many incomplete
methods have proven to be extremely useful for all but the most challenging navi-
gation instances, and we advocate using them whenever possible. Our work is most
applicable to the difficult situations in which less expensive methods fail.

We investigate a probabilistically complete distributed multi-robot navigation al-
gorithm that enables a team of robots to collaboratively solve their mutual navi-
gation problem, while also being robust to the partial communication failure that
occurs in real-world environments. Due to real-world environmental constraints on
wireless network quality, we are interested in algorithms that exploit the utility of
unreliable communication channels, but also take full advantage of high-quality net-
works. In previous work (Otte and Correll (2010)) we proposethe Any-Com in-
termediate solution sharing algorithm(Any-Com ISS). The basic idea is to paral-
lelize a probabilistically complete any-time random-treealgorithm to distribute the
computational load among the entire robotic team. Together, the team finds a sub-
optimal solution as quickly as possible, then refines that solution subject to both
communication and time constraints. The idea is inspired byprevious work on any-
time algorithms by Boddy and Dean (1989) and Ferguson and Stentz (2006).

As the name suggests, a key element of Any-Com ISS is the sharing of interme-
diate solutions among team members, where intermediate solutions are the asymp-
totically optimal solutions found by different robots as time progresses. Robots that
receive ISS data are able to prune their local portions of theglobal search tree to
reflect the best solution known to the sending robot (and, by extension, all robots
the sender has received messages from, etc.). Aggressive pruning focuses the team’s
remaining effort on finding even better solutions. Robots receiving ISS messages are
also able to directly improve the best solutions known to thesending robots.

This paper extends our previous work on Any-Com ISS by givingit the ability
to use dynamic teams similar to those described by (Clark et al (2003a)). Any-
Com ISS and dynamic teams compliment each other for a number of reasons. First,
Any-Com ISS assumes that robots working on the same problem are within com-
munication range, and dynamic teams can be used to ensure this condition is met.
Second, dynamic teams provide a graceful way to handle the discovery of previously
unknown robots; once discovered, Any-Com ISS provides a framework to harness
their computational power. Third, and most importantly, they are both designed to
attack the centralized multi-robot problem—albeit from different angles. By com-
bining the two ideas, we hope to create a more resilient algorithm that inherits the
positive aspects of both.

Previous work has focused on the necessity of dynamic teams due to limited
communication. In Clark et al (2003a) team formation is seenas a positive event
and allowed to occur as soon as two robots can communicate. This is because lim-
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ited communication necessarily hinders team formation andprevents information
exchange. In contrast, we believe aggressive team formation overlooks the algo-
rithm’s natural ability to break anr ≥ 2 robot problem into two separate problems
of sizen andm, wheren+m= r. Let the size of the workspace be denotedc. It is
much easier for two teams to solveO(cm) andO(cn) complex problems in parallel,
than for one large team to solve anO(cn+m) problem. Therefore, we believe teams
should be kept as small as possible, and only add robots to a team if doing so is
necessary to avoid collisions and maintain completeness guarantees.

In Section 4 we perform three experiments. The first evaluates performance of
a five robot team using Any-Com ISS in an environment deliberately made hostile
to communication with tin-can Faraday cages. Experiments two and three evaluate
the performance of Dynamic Team Any-Com ISS when used in Andrews Hall, a
large three-wing residence hall on the University of Colorado at Boulder campus.
The rest of this paper is organized as follows: related work is presented in Section 2,
discussion of results is given in Section 5, and conclusionsare drawn in Section 6.

2 Related Work

There exists a large body of literature on the multi-robot navigation problem. Pre-
vious approaches range from simple reactive solutions to fully coordinated, central-
ized solutions. In thecocktail partymodel all robots are ignorant of other agents’
intentions (Lumelsky and Harinarayan (1997)). Each agent maintains its own goals,
world-view, and navigation function. Other robots are viewed as obstacles, and the
control loop alternates between sensing, planning, and movement. If all robots use
the same algorithm, then the estimated movement of other robots can be refined (van
den Berg et al (2009)). Cocktail party algorithms are incomplete (e.g. fail when two
robots must move in opposite directions through a narrow corridor), but they are
popular due to their simplicity, scalability, and communication free architecture.

Often a set oftraffic rulesis used to facilitate navigation similar to the way auto-
mobiles (theoretically) interact via traffic laws (Alami etal (1998); Kato et al (1992);
Ryan (2008)). These methods assume each robot knows the rules, agrees to follow
them, and can sense required environmental cues (e.g. stoplights). Traffic rules are
simple, distributed, and scalable. However, they assume highly structured environ-
ments, and may contain rules that prohibit optimal solutions from being found (e.g.
taking a short-cut by going the wrong way down a one-way street).

Prioritized planningforces robots to respect the movement constraints imposed
by higher priority robots (Buckley (1989); Erdmann and Lozano-Perez (1987); War-
ren (1990)). The highest priority robot plans first, then thenext-highest, and so forth.
On-line versions exist that alternate sensing, planning, and movement (Clark and
Rock (2001); Hada and Takasa (2001); Yeung and Bekey (1987)). Prioritized meth-
ods are incomplete—higher priority robots follow optimal ornear-optimal trajec-
tories, but lower priority robots may be unable to find a solution. A similar idea
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has also been used to periodically guarantee line-of-sightcommunication while per-
forming coverage (Hollinger and Singh, 2010).

Decoupled planningworks in two phases (Aronov et al (1998); Guo and Parker
(2002); Kant and Zuker (1984); Leroy et al (1999); Simeon et al (2002)). Robots
calculate their own path to the goal in phase 1, while ignoring all other robots.
Space-time positions along these paths are then calculatedin phase 2. Priorities
may be assigned for the phase 2 calculation (Asarm and Schmidt (1997); Bennewitz
et al (2001)), and special cases exist for two robots (Lee andLee (1987); O’Donnell
and Lozano-Perez (1989)). Phase 1 is completely distributable, but phase 2 must be
performed on a single agent (or in parallel on each robot). Decoupled planning can
be distance-optimal but is incomplete because paths are determined after phase 1,
and may systemically conflict (Sanchez and Latombe (2002b)).

In Centralized planningall robots are viewed as individual pieces of a single
composite robot. Paths are calculated in the resulting high-dimensional configura-
tion space (Bonert et al (2000); Clark et al (2003b); Everettet al (1994); Parsons and
Canny (1990); Ramanathan and Alagar (1985); Sanchez and Latombe (2002a,b);
Schwartz and Sharir (1985); Xidias and Aspragathos (2008)). The high-dimensional
solution is then projected into the relevant subspace for each robot. Centralized plan-
ning is theoretically optimal and complete, but practical algorithms are usually prob-
abilistically or resolution complete/optimal. Centralized planning provides the best
guarantees of any multi-robot planning method, but it is also the most computa-
tionally complex. Dynamic teams have previously been used in conjunction with
centralized algorithms by Clark et al (2003a).

With respect to path-planning, previous work in centralized algorithms is the
most closely related work to our own, but requires each agentto calculate the entire
solution completely on its own. In contrast, our Intermediate Solution Sharing idea
leverages the distributed-computing power of the robotic team to help find better so-
lutions more quickly. Non-centralized approaches are incomplete, while Any-Com
ISS is probabilistically complete. Previous work has not considered what happens
when communication deteriorates, which is a main contribution of our work.

With respect to dynamic team formation, the most closely related work is Clark
et al (2003a). In that work, the authors form teams as soon as robots are within
communication range. In our work, we delay team creation until it is necessitated
by conflicting solutions. By keeping team sizes small, we hope to minimize the
complexity of the problems faced by the individual teams. Wealso perform experi-
ments in a much larger workspace that subjects robots to actual (i.e., not simulated)
wireless communication disturbances.

3 Methodology

For path planning we use the Any-Com ISS algorithm for multi-robot navigation
(Otte and Correll (2010)). This is a modified Any-Time Rapidly Exploring Ran-
dom Tree (RRT) algorithm with different random seeds per robot (leading to ap-
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proximately parallel search), and aggressive pruning of local search-trees based on
the best intermediate solution known to any robot. The underlying random-tree al-
gorithm is similar to RRT* (Karaman and Frazzoli (2010)) in that it judiciously
chooses how to attach new nodes to the tree in order to eliminate the winding and
wandering normally associated with RRT.

The ongoing information exchange between robots during theplanning phase is
also used to jump-start the consensus building that is necessary to ensure all robots
in a particular team use the same final solution. Successful communications help
to find better solutions and agreements more quickly, while unsuccessful commu-
nications do not hinder the eventual discovery of a solution/agreement. In practice,
robots must fall-back to using an incomplete method if communication totally fails
(e.g., after a period of communication black-out).

In this paper we extend Any-com ISS to incorporate dynamic teams of robots.
Messages passed between robots are modified to include:

• List of all members in the sender’s team (s.team, where the sending robot iss)
• Start and goal of the sender’s team
• Current planning epochs.Er of each robotr in the sender’s team
• Current locations.lr of each robotr

In addition to the usual ISS data:

• Best solutions.slncurrently known to the sender (for the sender’s problem)
• Best solution’s lengths.bstln
• ID of the robot that generateds.bstln
• List of robots that have submitted a final solution
• List of robots that supports.sln

Robots send messages that reflect their most current view of the global problem
state. This means that each robot is responsible for adding itself to the appropri-
ate lists in its outgoing messages. All messages are sent using the User Datagram
Protocol (UDP), which is a connection-less protocol that drops messages when com-
munication fails. Dropping old messages helps keep networkdata current.

Dynamic Team Any-Com ISS is outlined in Figure 1.ID is the global identifica-
tion number of the local robot. Each robot starts in its own team and attempts to find
a path to the goal (DynamicTeamAnyComISS(), lines 1 and 5, respectively).rst is
a flag used to indicate when the random tree should be restarted due to a change in
the planning problem (lines 4, 6).RandomTree() attempts to find a solution to the
current problem using the algorithm described in Otte and Correll (2010); it returns
successfully after the team has found and agreed upon a solution, or unsuccessfully
if rst = true. The subroutineFollowPath() causes a robot to follow its projection
of the global solution (line 7) andStopRobot() causes a robot to halt (line 9).

Robots periodically broadcast their best known solutions at rateω (Messaging(),
line 12). r.teamandteamare the sets of teammates of robotr and the local robot,
respectively.Dist(la, lb) returns the minimum distance between robotsa andb in
the workspace (line 14).Conflict(a.sln,b.sln) returns true if the two solutionsa.sln
andb.sln conflict (line 14). Teams are combined if their best intermediate or final
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DynamicTeamAnyComISS()
1: addID to team
2: on a separate processdo

Messaging() at rateω
3: for forever do
4: rst = false
5: RandomTree()
6: if not rst then
7: FollowPath()
8: else
9: StopRobot()

Messaging()
1: if message fromr ∈ teamand r.Er ≥ Er then
2: if r.team6= teamthen
3: for ∀ a s.t.a∈ r.team, a /∈ teamdo
4: adda to team
5: EID = EID +1
6: rst = true
7: for ∀ t ∈ teamdo
8: Et = max(Et , r.Et)
9: if r.bstln< bstlnthen

10: addr.sln to local search-tree
11: bstln= r.bstln
12: broadcast messages
13: else ifmessage fromr /∈ teamthen
14: if ID ∈ r.teamor (Conflict(r.sln,sln) and

∃a∈ r.team, ∃b∈ teams.t.Dist(la, lb)< δ ) then
15: for ∀ t s.t.t ∈ r.team, t /∈ teamdo
16: addt to team
17: EID = EID +1
18: rst = true

Fig. 1: Dynamic Team Any-Com ISS (left), and messaging subroutine (right).

solutions interfere with each other and robots creating/following those solutions are
closer than a predefined thresholdδ (lines 2-6 and 14-18).Er is an integer that is
incremented every time robotr ’s problem changes. This is done to ensure outdated
messages pertaining to old planning problems are ignored.r.bestlnandbstln are
the lengths of the best intermediate solutions known to robot r and the local robot,
respectively. If a message is received with a better solution, then that solution is
added to the local tree (lines 9-11).

There are a number of reasons to delay team formation as long as possible. First,
complete multi-robot navigation is exponentially complexin the number of robots,
so keeping teams small minimizes the problem complexity andhelps to find solu-
tions more quickly. Second, although any-com ISS is theoretically robust to poor
communication, it cannot work when communication completely fails. Good com-
munication also leads to improved performance. Assuming communication is gen-
erally better at closer range, forming teams such that teammates are near each other
reduces the chance of total communication failure.

Even when two teamsA andB are in conflict, we delay team combination until
a robot inA is closer thanδ to a robot inB. This is because there may exist another
robot/teamC 6⊂ (A∪B) initially beyond communication range, but that eventually
joins A or B and forces them to re-plan. Thus, the “conflicting” solutionof A or
B may either become invalid or cease to be in conflict before either team actually
reaches theA vs.B conflict. In contrast, ifA andB are in conflictand two robots are
physically near each other, then the chances of collision are greater, and we combine
the teams.
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Any-Com ISS is probabilistically complete, and assumes allrobots are within
communication range of each other. Letr be the minimum distance for robots to
detect a conflict and safely stop without colliding, measured between robot centers.

Theorem 1: Dynamic Team Any-Com ISS is probabilistically complete forany
δ such that r≤ δ < ∞, assuming a finite number of robots and all robots are within
communication range.

Proof: When robots in conflicting teams become closer thanδ , their teams are
combined. Teams are never uncombined. Teams continue to plan, move, and com-
bine until solutions are found that do not result in further combination. The latter
will happen in two cases:

1. All robots belong to a single team—which is the same as usingAny-Com ISS.
2. No conflicting teams ever get closer thanδ—so all remaining teams can effec-

tively ignore each other. This is the same as each team individually using Any-
Com ISS.

Either (1) or (2) must happen since the number of robots is finite. In either case, the
problem is reduced to running Any-Com ISS, which is probabilistically complete.
�

4 Experiments

We use the Prairiedog robotic platform (Figure 2, right). Robots run the ROS oper-
ating system, localize using the Hagisonic Stargazer, and are equipped with a map
of the environment (Figure 2-left and Figure 4). Robots exchange data using IEEE
802.11g wireless in ad-hoc mode. The target speed is set to 0.2 meters per second.

4.1 Faraday Cage Experiment

In this experiment five robots plan paths through an office environment while the
wireless channel is systematically disturbed by shieldingthe RF system using a
tin-can Faraday cage. We expect the imperfect Faraday cage to significantly disrupt
communication—but not completely prohibit it. Statistics are collected on the actual
solution quality and consensus time as a function of the effective packet throughput.
Solution quality is measured in terms of the maximum time to goal for any robot,
and consensus time is defined as the time after planning stopsuntil the entire team
agrees on a single solution.

Any-Com ISS is compared to a client-server method—henceforth referred to as
baseline. While Any-Com ISS uses the entire team for distributed computation,
baseline calculates its solution on a single agent and then distributes it to the other
robots. Simulations in our previous work have predicted that Any-Com ISS should
outperform baseline, even given packet-loss rates as high as 95% (Otte and Correll
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Fig. 2: Left: 5 robots in an office environment and the resulting paths. Right:
Prairiedog platform. Each robot is equipped with an indoor localization system, a
netbook and IEEE 802.11g wireless communication.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

 

 

Baseline
Any-Com ISS
Theoretical Baseline
Theoretical Any-Com ISS

S
ol

ut
io

n
Le

ng
th

(m
ax

tim
e

to
go

al
)

Minimum message success rate
0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

 

 

Baseline
Any-Com ISS
Theoretical Baseline
Theoretical Any-Com ISS

A
gr

ee
m

en
tt

im
e

(s
ec

)

Minimum message success rate

Fig. 3: Faraday cage experiment results. Crosses and stars correspond to the effec-
tive, measured packet loss in the environment. Error-bars show means and standard
deviations over 40 simulations assuming Poisson distributed package loss.

(2010)). However, the theoretical model used for simulation assumes that commu-
nication quality is Poisson distributed, and cannot account for all real-world com-
munication disturbances. This experiment is designed to test Any-Com ISS under
harsh communication constraints in a real-world environment, and either validate or
refute the earlier simulated predictions.

Experimental results are depicted in Figure 3, along with predictions from the
theoretical simulations. The real data are depicted as crosses/stars. The theoretical
data are shown as circles and error bars (representing mean and standard deviation
over 40 simulations, respectively, per a particular drop-rate). Note, the vertical ap-
pearance of the data-points at 1, 1/2, and 1/3 is an artifact of the low number of
messages sent by the baseline approach and caused by experiments where solutions
were successfully distributed on the first, second, and third, attempts, respectively.
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10m

Fig. 4: Andrews Hall (gray and white), with the polygon obstacle map (red), and
Conflicting solutions found when robot team sizes = 1 (black paths). Each robot
plans from its current location (blue) to a goal location (green).

Fig. 5: Actual robot paths vs. time (thick colored lines), and their projections on
the free-space of Andrews Hall (thin colored lines and gray,respectively). Time 0
corresponds to the start of movement. Blue successfully reaches the goal, but the
experiment is aborted when the red + black + pink team is unable to find a solution
after 10 minutes. Note, only the first 5 minutes of the experiment are plotted.

4.2 Large Andrews Hall Experiment

In this experiment we deploy four robots in Andrews Hall, a large building on the
University of Colorado at Boulder campus with a challengingfloor-plan that empha-
sizes team formation (see Figure 4). Two robots start in eachof the east and west
wings of the building, respectively. Robots are assigned the task of trading places
with a robot in the opposite wing. As discussed in the previous section, robots ini-
tially plan a path to the goal for themselves, then form larger teams and re-plan if
they encounter other robots/teams who’s paths conflict withtheir own. Team forma-
tion distanceδ is set to 3 meters.

We performed 5 runs of the experiment and observe failure or partial failure in
all runs. That is, never did all four robots successfully reach their goals in a single
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Fig. 6: Workspace is limited to the large common room. Actualrobot paths vs. time
(thick colored lines), and their projections on the free-space (thin colored lines and
gray, respectively). Time 0 corresponds to the start of movement. The resulting robot
paths are plotted vs. time (thick colored paths), along withtheir projections on the
free-space (colored paths and gray, respectively).

run. We postpone a full discussion of this result until the next section; however, the
failure is due to the computational complexity of a large workspace combined with
large dynamic team size. Planning through the entire residence hall is too complex
a problem for teams of more than two robots to handle in any reasonable amount of
time, and the design of the building makes it unlikely that all robots will reach their
goals without forming teams of size three or four. Over all five runs, the average
observed communication quality between any two members of the same team is
60.69% with a standard deviation of 22.64%—so communicationquality is not to
blame for the team’s repeated failure to find a solution.

Figure 5 illustrates robot location vs. time from a typical run of the experiment.
The red robot catches up to the black robot and they form a dynamic team in the
east wing of the building (the left wing of the plot). Before red and black discover
a 2-robot solution, the pink robot joins their team. The resulting 3 robot team is
unable to find an initial solution after planning for 10 minutes, and the experiment
is halted. In this run, blue is the only robot able to successfully reach its goal.

4.3 Small Andrews Hall Experiment

This experiment is similar to the previous one, except that the 4 robots start in lo-
cations as they might enter the large common room in the center of the dormitory.
From the combined team’s point of view, the workspace is limited to include only
the common room. Also,δ is increased to 10 meters so the robots are able to quickly
form one large team when their solutions conflict. We perform10 runs, and observe
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Table 1: Small Andrews Hall Experiment Statistics, 10 runs with 4 robots

meanstandard deviation
In-team communication quality 67.47% 26.68%
Time to first solution (seconds) 14.24 9.55
First solution length (meters) 46.59 4.30
Final solution length (meters) 38.02 3.27
Actual distance traveled (meters) 44.88 7.80

that all robots successfully reach their goals in every run.Figure 6 depicts robot
locations vs. time for a typical run. The mean and standard deviation of observed
statistics over all 10 runs are displayed in Table 1. Solution length is measured as
the sum of all individual path lengths. The mean measured distance robots actu-
ally traveled is greater than the mean final solution length due to small pose jumps
between localization tags and temporary localization error incurred between global
localization updates during rotation.

5 Discussion of Results

In the Faraday cage experiment, Any-Com ISS out-performs the baseline method in
terms of solution quality (i.e., path-time-to-goal). The two methods are similar with
respect to agreement time, except that Any-Com has a lower standard deviation—
which we attribute to early consensus building during the planning phase. Basic
trends in the experimental results are similar to those predicted by the theoretical
simulations. However, in practice, we observe that agreement times are greater than
those predicted by the theoretical model. We believe this isdue to the fact that wire-
less communication is not Poisson distributed in the real world. We also find that
Any-Com ISS can drastically speed up computation, even if packet loss is as high
as 97%. In other words the team is able to act as an effective distributed computer
with only 3% of the messages getting through.

In the large Andrews Hall experiment we observe that the configuration space
of teams involving three or more robots is so large that the problem becomes in-
tractable. This happens despite the distributed computingpower of the robotic team
using Any-Com ISS, and our efforts to delay team formation (and thus problem
complexity) as much as possible. The observation that intra-team packet loss was
less than 40%, on average, suggests that the team’s difficulty in finding a solution
was due to problem complexity and not poor communication. This result is interest-
ing because it shows that dynamic team formation can lead to grid-lock and failure
because it forces teams to deal with the worst-case complexity of the problem. In
contrast, the small Andrews hall experiment shows that solving a reduced problem
is well within the computational power of a 4 robot team. These contrasting results
highlight the need for new dynamic team algorithms that limit a team’s workspace
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to the minimum subset of the environment required to solve its communal planning
problem.

Assume there are two teams of sizen andm, respectively, that have conflicting
solutions. If we desire to find a complete solution to the combined problem, then
a larger combined team must be formed (to ensure conflicting robots are aware of
each-others’ intentions, and thus avoid each other when a new solution is planned).
However, chances are good that the two smaller solutions only conflict in a small
subspace of the original workspace. Let the complexity of the subspace in which
they conflict be denoteds. Note thats≤ c, wherec is the complexity of the original
problem. Thus, solving the sub-problem is onlyO((s/c)n+m) ≤ 1 times as hard
as solving the original problem, and ass becomes small relative toc, the relative
difficulty of the sub-problem approaches 0. Therefore, it makes sense to have the
team focus on re-planning its solution for only the subset ofthe original problem that
is in conflict. This can be achieved by having each team retainthe valid portions of
their old solutions, while jointly finding a solution to the combined problem through
the conflicting subspace—much as shown in Figure 6. The relevant projections of
the combined solution can then be sandwiched between the valid ends of each team’s
original plan. Individual robots can even work on solving the combined sub-problem
en-route to their starting locations for it.

One reason we already use dynamic teams is because they allowrobots to solve
less complex problems in parallel, graduating to more complex problems only when
necessary. It seems reasonable that we extend the existing functionality of dynamic
team formation to include tractable sub-problem selection, as well. We hope to ex-
plore these ideas in future work. Despite all precautions taken during dynamic team
formation, in a worst-case scenario all robots may still endup as part of a single
team that must plan through the entire environment. When confronted with this
worst-case scenario, teams may be unable to find a reasonablesolution, and may
still need to fall-back to using an incomplete method.

6 Conclusions

We experimentally evaluate a distributed centralized multi-robot path-planning al-
gorithm called Dynamic Team Any-Com ISS. Each robot starts in its own team, and
teams are joined if their individual solutions conflict. Combining teams based on
path conflicts allows non-conflicting teams to solve problems of reduced complexity
in parallel. Within a particular team, distributed computation utilizes the computing
potential of all team-members to find better solutions more quickly.

In our first experiment, we intentionally disrupt communication using a tin-can
Faraday cage and find that Any-Com ISS functions well despitepacket loss rates
as high as 97%. This result validates theoretical results obtained from simulation,
and is important because it shows that a robotic team can function as an effective
distributed computer despite poor communication.
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In further experiments we evaluate Dynamic Team Any-Com ISSin a large,
complex, indoor environment. When instructed to swap placesfrom one end of the
building to the other, robots succeed in forming teams afterthey discover each other.
However, the large hyper-volume of the team’s configurationspace prohibits teams
of three or more robots from finding a solution within any useful amount of time.
In contrast, teams of four robots are able to solve the similar but smaller problem of
trading places across a common room located in the center of the building—a likely
place for individually planned paths from the previous experiment to conflict.

Although computational complexity of centralized algorithms is a known theo-
retical issue, we show experimentally that it can cause dynamic team formation to
trigger grid-lock and failure. This illustrates the importance of algorithms for choos-
ing appropriate sub-problems for dynamic teams to solve. Webelieve that dynamic
teams operating in large environments should attempt to solve the smallest sub-
problems necessary to avoid collision. For example, by having the combined team
plan only from one side of a conflict region to the other, and leaving navigation to
and from that area up to the individual robots or smaller teams. Despite the expo-
nential complexity of complete multi-robot problems, thisstrategy is advantageous
because it decreases the size of the base to which the exponent is raised.

Our work on Dynamic Team Any-Com ISS attempts to extend the size of prob-
lems for which a complete solution can be calculated. By delaying team formation as
long as possible, dynamic teams attempt to minimize the complexity of the problem
required to be solved by any particular team. When a team must be formed, Any-
Com ISS divides the effort of computing the members’ common solution among all
robots that solution will benefit.
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