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Abstract—An approach to stereo based local path planning in
unstructured environments is presented. The approach differs
from previous stereo based and image based planning systems
(e.g. top-down occupancy grid planners, autonomous highway
driving algorithms, and view-sequenced route representation),
in that it uses specialized cost functions to find paths through an
occupancy grid representation of the world directly in the
image plane and forgoes a projection of cost information from
the image plane down onto a top-down 2D Cartesian cost map.
We discuss three cost metrics for path selection in image space.
We present a basic image based planning system, discuss its
susceptibility to rotational and translational oscillation, and
present and implement two extensions to the basic system that
overcome these limitations—a cylindrical based image system
and a hierarchical planning system. All three systems are
implemented in an autonomous robot and are tested against a
standard top-down 2D Cartesian planning system on three
outdoor courses of varying difficulty. We find that the basic
image based planning system fails under certain conditions;
however, the cylindrical based system is well suited to the task
of local path planning and for use as a high resolution local
planning component of a hierarchical planning system.

I. INTRODUCTION

AUTONOMUS robot navigation aims to identify a series of
movements that, when executed in a sequence, will
translate the robot from a starting position to a goal position.
The search for this path is constrained by the robot’s sensor
information and its own kinematic limitations. Ideally, the
path is chosen to minimize (or maximize) some criteria, such
as energy expenditure. In highly structured environments,
such as those encountered by a manipulator arm on a factory
floor, an objective function can be found that describes the
manifold on which the arm is constrained in actuator space.
In this case, however, uncertainty about the world is limited.
On the other hand, in unstructured environments—
particularly outdoor environments beyond the city streets and
paths of human infrastructure—we do not have such high
confidence a priori knowledge about the relationship
between the appearance of a scene and its traversability.
Visual perception involves decoding the 2D projection of
3D Cartesian space as it is captured by a robot’s imaging
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sensors [1], [2]. This 2D projection is referred to as image
space. Many approaches to path planning in unstructured
environments derive an obstacle vs. safe representation of a
scene—referred to as an occupancy grid—which is then
projected down from image space onto the ground plane and
inserted into an X-Y Cartesian map [3], [4]. Path planning
systems have also used 3D occupancy grids to represent the
world [5]. The A* algorithm [6] (or some variant [7]-[9]) is
then used to find a path through the occupancy grid between
the robot’s position and the goal [3]. Work has also been
done to model the path planning problem with various types
of potential fields, as in [10] and [11], and as a hybrid of A*
and potential fields, as in [12].

There are a number of advantages to planning a mobile
robot’s movement in a Cartesian map. However, this
representation is not ideal for near-field planning because in
order to maintain a map with a computationally feasible
search space, the world must be resampled at a non-native
resolution. This produces a projected image with low
fidelity. Although there are some planners that maintain a
higher resolution map for local path planning, e.g. [13], we
propose that the transformation onto the Cartesian plane is
superfluous.

To the best of our knowledge, planning and actuation in
the image space has not been studied on a robot platform in
unstructured environments. There are, however, examples of
image based visual servoing in semi-structured and
structured environments.

Autonomous highway driving algorithms such as Navlab
and its many implementations operate in a semi-structured
environment [14]-[18]. Information from image features
such as lane markings, other automobiles, road color/texture,
etc, allow these algorithms to follow the road while avoiding
obstacles.

A robotic arm on a factory floor can be controlled via a
constraint optimization function that maps the current field
of view (FOV) to a reference or target frame through a series
of movements [19], [20]. This idea has been extended to
mobile robots in semi-structured environments in various
forms [21]-[23]. For instance, View-Sequenced Route
Representation (VSRR) is a mapless navigation technique
that calculates the displacement between a target image and
the current FOV [24], [25]. This displacement is then
translated into steering commands.

Both Navlab and VSRR type models develop a control
strategy as a function of the perceived scene. However, both



Navlab and VSRR make assumptions about the information
that is available to them from the scene; for instance, the
existence of lane markings or a clear view of a predefined
goal state, respectively. These may be reasonable constraints
in structured or semi-structured environments; however,
planning through ambiguous terrain renders them infeasible.

Our task involves not only identifying traversable terrain
from non-traversable terrain, but also finding and staying on
the optimal path to the goal. We present an approach to path
planning that allows local path search to take place directly
in the image plane, thereby preserving the flexibility of the
occupancy grid paradigm and avoiding the corresponding
transformation distortion induced by the projection into a
Cartesian coordinate system. In our scheme, a real-world
GPS coordinate is projected into image space as a goal.
Next, a variant of A* is used in image space to identify the
optimal path to the goal. Finally, robot servoing in the real
world is accomplished via the image space path that is found
by A*. Special attention must be placed on the run-time
complexity of the system to allow the robot a suitable
reaction time.

We call our basic image based planning system the Image
planner, and introduce it in Section III-A. We then discuss
its susceptibility to rotational and translational oscillations.
That is, because the Image planner lacks memory of the
world, planning can quickly degenerate into an infinite loop
of the form: move away from the goal to avoid an obstacle,
and then move back toward the goal (and thus the obstacle),
after forgetting that the obstacle exists. These limitations are
addressed with a series of extensions to the Image planner.
The Cylindrical planner, introduced in Section III-B, is
created by augmenting the rotational memory of the Image
planner to include the world beyond its FOV, and a hybrid
hierarchical planner, introduced in Section III-C, combines
the strengths of a local image planner with those of a global
Cartesian planner. In Section IV we describe our
experiments, and in Section V we discuss our results.

II. EXPERIMENTAL APPARATUS

Our mobile robot platform is provided in conjunction with
the DARPA Learning Applied to Ground Robotics (LAGR)
program. It measures roughly 1m x 1.5m x 1.5m. Its sensors
include: two forward facing Point Grey BumbleBee 2 stereo
cameras, a Garmin GPS receiver, a magnetic compass, and
wheel odometers. Translation and rotation are achieved via
two independently driven front wheels. The wheels are
located on either side of the vertical axis that passes through
the midpoint of the sensor mast, thus rotation around the
mast axis is achieved by driving the wheels in opposite
directions at the same speed.

III. PLANNING SYSTEMS

A. Image Planner

Let R denote the 3D Cartesian real-world space. Our work
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Fig. 1. A path through O from the robot position to a goal in the far-
field, where light to dark corresponds to low to high cost (left). The path
projected into a black and white image of the scene (right).

focuses on navigation through R toward a goal via paths
found in image space. The robot perceives R as a stereo
disparity image S, provided by a pair of stereo CCD cameras.
We build an occupancy grid O in image space based on S,
and then find the path P in the set of paths P through O
that minimizes a quantity W that is analogous to mechanical
work (i.e. force multiplied by distance). See Fig. 1. Because
any path found in O is a projection of some path existing in
R, it is possible to navigate through R using P. This can be
done directly, or via a projection of P from image space to R.
We define the traversability of R with an occupancy grid O:

O = F(S) =[S0 =S}, (1)
where § is organized in an h by w Cartesian grid based on

the camera's physical pixel layout, and n = 1...h and m =
1...w. Note that n = 1 and m = 1 correspond to the top row

and left most column of O, respectively. S ,'lm is the disparity
of pixel (n, m) in the scene at time ¢ and S,{l,ff is the nominal

disparity of a flat ground plane R™. In our experiments, the
goal R,y is defined by a GPS coordinate in R. R, is
mapped into O as O,,,, assuming that both R,,, and the
robot exist on R™. The robot’s starting location in O is
defined Oy, =0),,,. We interpret the traversability values
stored in O as forces F that impede robot progress, and we
search for paths through O that minimize the amount of work
W that must be exerted to reach O,y from Oy

OEM,
W, = J F(P)dP 2)

start

where dP is the differential of position along P. Og,, and
Oy are nodes in O that anchor the endpoints of P. P
contains IIPIl connected subsections i in O, each starting at
the center of a grid location O, and terminating at O, ,,, one
of the 8-connected neighbors of O;,. Therefore, the work
required to traverse P is found by the summation of work
over its subsections.

Wp = ZWz = ZFiDi ’ 3)

VieP VieP

where W, is the work required to navigate path subsection i,
F; is the force that impedes robot progress along i, and D; is
the length of i (i.e. the distance between O;; and O, ,,). In
order to find the optimal path, P”™" we implement a
version of the A* algorithm that uses W as its cost function.
A* will return the path that minimizes W,,, the ammount of
work required to reach the goal.
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In our implementation of A*, F=1+0,,,, to impose a positive
minimum force in the case of flat-ground traversal.

Any metric used to calculate P””"™ must account for the
fact that paths found in O will determine navigation through
R. Thus, care must be taken when choosing a distance metric
D,. We investigate three possible distance functions for D;.
The most straightforward method for calculating D; is to
project the endpoints of i into R, with the help of S, and then
use the standard Euclidian distance metric in 3-space. We
call this distance DlR.

Although this metric seems very appropriate, a problem
arises when the goal is projected into a high cost region (i.e.
an obstacle). The optimal path is often to traverse directly
through the obstacle. This is due to the fact that, as far as the
planner is concerned, the goal exists within the high cost
region in O and not behind the obstacle on R™ For instance,
if a tree is located between the robot and a goal, then it will
appear in O as if the goal has been projected onto the front
of the tree. Thus, the shortest path to the goal appears to
require climbing the tree.

. R flat .
The second function we evaluate, D;" , estimates the

Cartesian distance between 1, and 1,, the endpoints of i
projected from the camera through the image plane and onto
R™_Refer to Fig. 2. Projecting i back to R™ avoids the tree
climbing problem because the distance required to go up the
front of the tree is the same as the distance required to reach
the goal by traversing along R™_ Note that the tree will be
avoided due to high F; values.

Let & and & be the vectors that travel from the base of the

robot R/

focus

pR — \/ (d, —d,) + 4d1d2sin2(%j , (5)

where d; and d, are the magnitudes of &; and &, respectively,
and y is the angle between them. We develop equations for d
and v in the Appendix and show that, given certain
assumptions, a function exists for d that is dependent on grid
row (n or j) and four intrinsic values associated with the
robotic system in general. Likewise, a function exists for y
that is dependent on |m-kl and two intrinsic values. The

. flar |
to 1, and 1,, respectively. D,R is calculated:

. flat .
calculation of DiR can be performed offline, once for each
combination of n, j, and Im-kl, and stored for later use.

The final distance metric we investigate, Dl-o , is the L2

norm between grid locations in O, assuming that horizontal
and vertical neighbors are spaced unit length apart.

DY =\l j)(m~k)’ (©)
The calculation of DiO forgoes the projection between image

space and Cartesian space, allowing D,-O to be calculated
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Fig. 2. Calculation of D; . Rfocus s the focal point of the robot’s

camera. 1; and 1, are the endpoints of i projected onto R™.
. . R fat 0 .
relatively easily compared to D;" . Note that D;” will

always be 1, 1, and \/E for vertical, horizontal, and diagonal
neighbors, respectively.

The A* search algorithm finds a path to the goal that
minimizes the work expenditure as a function of both the
distance traveled and the difficulty of travel. However, this
model accounts for neither the physical extension of the
robot, nor its ability to rotate in place around its central axis.
As suggested by [4], [13], and [26], we increase the width of
obstacles in the occupancy grid as a function of robot width
4, allowing the robot to be treated as a particle during path
search. Note that the apparent width of an obstacle in O is
related to the distance between the robot and the obstacle in
R. We approximate this relationship by assuming that
obstacles exist on R™. With this assumption, the distance to
an obstacle is d,,,, and obstacle dilation becomes a function
of n that can be calculated offline.

On,m = max (On,m+k ) (7)

where £ is an integer such that 1 < (m + k) <w and
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0
where 6 is the angle of the camera’s FOV parallel to R™,
and ¢ is the minimum clearance allowed between the robot
and an obstacle. This assumes that each row in O represents
an approximately equal angle of 8. The assumption that
obstacles exist on R™ is only valid for portions of obstacles
that are in direct contact with the ground plane (i.e. their
bases). In many environments navigation around the base of
an obstacle is sufficient to avoid collision; however, this is
not generally the case. The factor ¢ can be increased to
address this discrepancy as the operational environment
requires.

O is preprocessed to enable rotation around the central
axis of the robot by setting Oy, ,=0. Pixels above the horizon
are ignored in O because sky traversal should be impossible.
The horizon is assumed to be generated from the ground
plane R™ at infinity.

Servoing is accomplished by steering toward a target
location Piyrge= Ontargermtiarger 10cated some predetermined
distance along P in O. This is either achieved by mapping



P4rger into R™ from O and then steering toward the resulting
location, or by implementing the servoing function directly
in O. We use the latter method in our experiments to
calculate steering angle and speed where

maxSpeed (nTarget -h2 )

\/(mTarget -w/ 2)2 - (nTarget —h/ 2)2

steering Angle = 8lmTarget - w/2) .

w
We assume that the robot has reached the goal when
Prarge=On - If Prarge=Ohmnp, then there is only a rotational
component to movement. If P, =0, then there is only
a translational component to movement. Otherwise,
movement consists of a combination of translation and

rotation.

speed = , )

(10)

B. Cylindrical Planner

The Cylindrical planner is created by adding additional
elements to O that allow for storage of information that has
passed outside of the robot's field of view in R. The model
uses a cylindrical representation of O that can be thought of
as a radially panoramic mosaic of what the robot has
experienced. Radially panoramic mosaics have been used in
the past for landmark detection and pose estimation [25],
[27], [28]. For implementation purposes, O is represented as
a simple 2D grid C, with the added requirement that C,; is
considered a neighbor of Cj,, and Cj; is considered a
neighbor of C,,, for all rows n and j in C, where j =
{n+1,n,n-1} and p is the number of columns in C.
Information is added to C by:

C S_ﬂaf _ Sl

nm| *

(1)

That is, information destined for storage in C is offset
horizontally by a function of ¢, robot yaw relative to North.
flp) is calculated as:

o | 2 (fp-mNmoa 20)+1.

In other words, stereo disparity data is placed into C as a
function of the compass direction that the robot is facing
when the image is captured. This implies that the cardinal
directions South, West, North, East, and South, will be
mapped from R into the following columns of C: 0, |_p/4j,
|_p/2j, |_3p/4j, and p, respectively.

flp) is calculated ignoring the distortion that is caused by
approximating multiple planes as a cylinder, and ignoring the
fact that the image plane is not parallel to the cylinder’s
longitudinal axis. If the FOV is such that these distortions
cannot be ignored, then two possible solutions exist; either a
projection can be used that reconstructs the image plane
correctly on the cylinder, or the FOV can be restricted in
width such that the distortion is no longer a problem.

The A* search algorithm is modified for use on C by
allowing path sections to exist across the South-South
border, and by setting the robot’s location in C according to
its pose: Cropo=Ch ). The goal is projected into C based on

nm+f(9)

(12)
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Fig. 3. A path from the robot position to a goal located at the base of a tree
through the Cylindrical planner’s occupancy grid. Light to dark
corresponds to low to high cost.
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the distance between the Ry, .

compass heading of the goal relative to the robot. (21),
derived in the Appendix, defines this projection. Fig. 3
depicts a typical search through C.

A function exists that describes how elements in C should
be updated for any combination of translation and rotation
that the robot executes in R™. However, we find that it is
computationally prohibitive to calculate within the robot’s
reaction time.

An alternative memory-updating scheme is implemented
by having C gradually forget information outside of the
robot’s FOV as a function of the distance that the robot has
traveled,

and the goal on R™ and the

d forger — \/(AEast)2 + (ANorth)2

(13)

C,,; =C,| max| 0,
dforgel

where dj,,,., is the distance required to erase all rotational
memory in a single update [26]. In this scheme, no
translational updating takes place, and the values in C
outside of the FOV will decay toward zero. We manually
tune dy,q,; to mimic the information loss observed in the
translation scheme.

C. Hierarchical Planner

A hierarchical planner attempts to solve the path planning
problem by dividing it up into the parallel problems of global
and local planning. The local planner is charged with
obstacle avoidance and navigation toward sub-goals.
Meanwhile, the global planner concerns itself with a coarse
representation of the world and returns appropriate sub-goals
to the local planner. Hierarchical planners have been used in
a variety of robot path planning schemes [29], [30]. For
instance, [31] models the global world as a graph of
connected nodes, in which, each node acts as the local map.
[13] also models the global world as a graph of connected
nodes, but views the local world in top-down Cartesian
space. In [32], both the local and global planners are
versions of the top-down occupancy grid model. In standard
hierarchical Cartesian planners, the local cost-map is high
resolution, fixed in size, and remains centered on the robot;
the global cost-map maintains a lower resolution, expands
with exploration, and remains fixed to some global frame of
reference.

We implement a hierarchical planner that uses a top-down
occupancy grid for the global planning component and the
Cylinder planner for the local planning component. This



configuration combines the local path planning strengths of
image based path planning—high resolution obstacle
avoidance and servoing—with the global strengths of the
birds-eye view occupancy grid—translational memory. Data
is stored in the global planner’s occupancy grid, B, as a

sflar _g! | onto R™. In our experiments, the

projection of

resolution of B is 0.5 meters. Path planning through B is
accomplished via a version of the work minimization A*
search algorithm (4), where D; is the Euclidean distance
between grid locations in B. Sub-goals are chosen to be 5
meters to 10 meters away from the robot.

IV. EXPERIMENTS
We compare implementations of our three planning
systems that use the DP distance metric (described in

section III-A) to a baseline top-down planner on three
courses in unstructured outdoor environments. The baseline
planner has an occupancy grid granularity of 50 centimeters
and is nearly identical to the global half of the hierarchical
planner. Courses 1, 2, and 3 are depicted in Fig. 4, Fig. 5,
and Fig. 6, respectively. The actual paths that the robot took
are overlaid on a top-down occupancy grid map of the
environment. All maps were generated independent of the
test runs by teleoperation. The granularity of each occupancy
grid is 50 centimeters. Course 1 is a simple course that
consists of randomly placed obstacles with radii of 10
centimeters to 1 meter. Courses 2 and 3 are similar to Course
1, except that Course 2 adds an obstacle of 10 meter girth,
and Course 3 contains two adjoining obstacles each 1 meter
wide and 30 meters and 10 meters long, respectively.

A version of the hierarchical planner implemented to use

flat .
the D" distance metric was also tested on course 3. The
rout taken by this system is depicted in Fig. 7.

V. DISCUSSION AND RESULTS

Path planning for robot navigation is a real-time system in
which the robot must be able to observe the world and react
quickly enough to guarantee safety and reliability. At the
robot’s minimum speed (approximately 0.125 m/s), robust
navigation requires that the robot perceive the world and
react at least every quarter meter, or 0.5 Hz. Ideally, we
would like the robot to translate at a rate of 0.5 m/s or
greater, which means the robot must plan at least 2 Hz.
Improving frame-rate beyond this is not unreasonable given
state of the art CPUs. Nonetheless, care is taken to limit the
time complexity of our algorithms.

flat . .
We found that the D distance metric causes the path

to be extremely sensitive to noise. When noise occurs in an
otherwise traversable area, it creates a pseudo-obstacle that
the planning system attempts to avoid like any other high

. flat . .
cost region. D" mandates that the cost associated with

traveling between neighboring grid locations decreases as a
function of occupancy grid row (Fig. 8). Thus, the least
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expensive path around an obstacle will avoid the obstacle in
the near field—often by an immediate rotation. This would
not be a problem in the absence of noise. However, because
pseudo-obstacles pop in and out of existence, erratic
behavior is induced by the planning system’s continuous
attempts to avoid new pseudo-obstacles. Fig. 6 and Fig. 7
show, respectively, the performance of the hierarchical

. flat .
planner using the Dio and D metrics on Course 3. The

route taken by the hierarchical planning system in Fig. 6 is
much smoother than the one in Fig. 7.

Dio tends to distort R™ distances, especially in the far
field (Fig. 8). However, Dio works well in practice. By

defining the distance between neighbors to be invariant of
grid location, it avoids the near-field noise sensitivity

observed with DiRﬂm. This is because paths are penalized
equally for near and far field detours, so the path is free to
follow the geodesic around an obstacle or pseudo-obstacle
without making an immediate correction. Also, because the
range of our stereo sensors is effectively 12 meters, severe
far-field distance distortion is somewhat irrelevant. Note that
in Fig. 8 the horizontal distortion ratio is less than 2 for
nearly half of the occupancy grid.

We found that the basic Image planner is able to navigate
through simple courses, such as Course 1; however, it is not
a robust planning system. For instance, when R,,, is not in
the robot's FOV it cannot be mapped into O. This will
happen if the robot starts in such an orientation, is close to
the goal, or has rotated away from R, in order to avoid an
obstacle. Consequently, the Image planner fails unless some
predefined course of action is hard-coded into the system.
The first case is solved by requiring the robot to rotate in the
direction of the goal upon start-up. The second case can be
ignored because it will only happen once the robot has
completed its task. The final case is non-trivial and plans of
action must involve movement containing a translational
component and a rotational component. Without both
components, the robot risks never finding a path to the goal.
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Fig. 9. Translational oscillation induced in the Cylindrical planner by
a long thin wall. The initial path around the wall (top), and the path at
a later time (bottom).

Purely forward movement will carry the robot away from the
goal indefinitely, whereas movement in the reverse direction
risks obstacle collision. Pure rotation may induce oscillatory
behavior, as the robot alternately rotates away from the
obstacle and then back toward the goal after forgetting that
the obstacle exists. We observed the Image planner
displaying this behavior on Courses 2 and 3, Fig. 5 and Fig.
6, respectively—note that each test was manually aborted
after the robot oscillated for two minutes. A naive procedure
that translates some distance before allowing rotation in the
direction of the goal may perturb the system enough to
overcome this condition. However, this does not address the
deeper problem at the heart of rotational-oscillatory
behavior—namely, the lack of rotational memory. The
rotational memory of the Cylindrical planner allows it to
remember the obstacle's existence, even when the obstacle is
outside the robot’s field of view. Note that in Fig. 5 the
Cylindrical planner navigates around the obstacle to the goal.

The Cylindrical planner was able to find the goal in all
three tests. However, on Course 3 (Fig. 6) it was the only
planning system that opted to travel around the lengthier of
the two obstacles. We speculate that this behavior would
have degenerated into translational oscillation if the obstacle
had been longer. Consider the case of Fig. 9, top. A goal is
placed directly North of the center of a long thin wall that
runs East to West (e.g. the length of the wall is 1km and the
width of the wall is 1m). The robot starts South of the center
of the wall. At first, given the information in C, it will appear
possible to navigate around the wall in either direction.
However, as the robot moves toward one end of the wall, the
goal will appear to move toward the opposite end of the wall
from the robot’s point of view (Fig. 9 bottom). Eventually, it
will appear cheaper to reverse direction and attempt to reach
the goal by going around the opposite end of the wall. This
will repeat each time the robot travels a certain distance
away from the goal in either direction.

The only way to avoid this problem is to introduce some
form of global translational memory, such as a global 3D or
2D top-down Cartesian planner. Local versions of these
planners do not suffice—they are, by definition, only
concerned with portions of the world near the robot and will
always be vulnerable to translational oscillation induced by



obstacles larger than their translational memory. The
hierarchical planner, on the other hand, if confronted with a
large obstacle, will eventually find a way around it—if one
exists. However, solutions can be suboptimal. For example,
the robot may backtrack many times as it explores for a way
around the wall [33]. This is observed in Fig. 6 for both the
baseline planner and the hierarchical planner. This
suboptimal behavior can be described as translational quasi-
oscillatory, and is related to (but not identical to) the
translational oscillatory problem previously addressed. Any
planning system that must make decisions based on limited
information is susceptible to quasi-oscillatory behavior
because any currently optimal solution may change as new
information is discovered. Work has been done on this
complex global planning phenomenon by [34].

If the system has sufficient prior knowledge of the domain
(e.g. a map) then the planner is able to make piece-wise
optimal decisions that form a globally optimal decision.
Highly structured environments, for instance those
encountered by systems like Navlab, may contain sufficient
information to use a local planner in a global setting.
Similarly, the Cylindrical planner is equipped to navigate
through environments similar to Courses 1 and 2 without the
help of the hierarchical planner.

VI. CONCLUSION AND FUTURE WORK

We have demonstrated the efficacy of image based path
planning. However, any robust path-planning algorithm must
address two environmental scenarios: those that lead to
rotational oscillation and those that lead to translational
oscillation. Our Image planner is susceptible to both, a
limitation not shared by the traditional top-down Cartesian
planners. We address these situations with a series of
extensions to the Image planner. By augmenting the memory
of the Image planner to include the world beyond the FOV,
the Cylindrical planner is capable of overcoming rotational
oscillations. We find that, in general, the translational
oscillation problem can only be solved by a planner that
maintains global translational memory. Although planning in
image space does not displace the Cartesian planner, it does
relegate it to the more aptly suited function of global
planning. Local planning in image space is robust, and
provides a simple framework for maintaining a high
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Fig. 10. FOV and accompanying variables used to calculate d and .

resolution world-view. A hierarchical planner combines the
strengths of both systems and is able to plan a more natural
path, which can then be executed more fluidly.

The high fidelity occupancy grid used in image space
planning provides a natural framework to include more
sophisticated models about the traversability of terrain. Color
and texture models could be combined with stereo
information to allow for more robust path planning. One
unaddressed limitation of the Cylindrical planning system is
its inability to plan behind obstacles; this is one of our
current research focuses. The end goal of our efforts is a
principled interaction between Cylindrical and Cartesian
path planning. This paper proposed the first such successful
framework, and sets the stage for future research efforts.

VII. APPENDIX

A. Derivation of d, ,
Assume that the robot is on R™ at R and that its FOV

focus

is oriented such that the center pixel in the image is below
the horizon (Fig. 10). Let Ry, be the focus of the camera in
R, and let 1( be the first point on R™ that is visible in the
camera’s FOV. Let V be the plane that contains 1y and is
parallel to the image plane. y is the unit vector associated
with the vertical length of a pixel in the image plane, and u is
the projection of y through Ry,.,, onto V in R. geened(n) is a
function that maps pixels’ centers from the center column of
the image plane onto points on V contained in R. g..ue () is
a function that maps pixels’ centers from the center column
of the image plane onto points on R™. Note that

To _qcenter[ _@]:gcemer[h_@]' (14)

Let a be the vector between Ry, and gcep(h/2) and let b
be the vector between Ry and g..{n). o is the angle
between a and b

p= tan”!| Ju /2=l =) (15)
ol
where /£ is the number of rows in the image plane and
Jaf = 4e* 90 _ g cos(o). (16)

cos( )

d. is the measured distance from t¢ t0 ge.ue (h/2), dy is the

measured distance from R/

ocus 1O T0s and o is the angle

between a and R™.
o=tan"'(d, /(d, +d,))

where d, is the measured distance between R%‘j’m

(17)
and Ry,cys.

We can now calculate d,,,,,, the distance between R%‘z; .

and g(‘enler(n)'
2 sin(z/2—p)

d = |u|/(z - Fd, 18
now /2 "“"( Snleia—p+p) 0 (13)

where g is the angle between V and R™,
pf=nl2-0, (19)



and the magnitude of u is calculated by:

o] = 22 sin(o). (20)
The inverse function to (18) is given by:
= (dn,w/z —do)sin(tanfl(dv /dn,w/z)) +1 @1

| [usinle/2-@na, 14, ,,)+0) 2

If the image distortion caused by a rotation of /2 can be
ignored, e.g. 0 is small such that tan(@/ 2)= sin(@ / 2), then

dn,m = dn,W/Z . (22)

B. Derivation of w

Let i be the angular distance in R™ associated with the
R™ projection of the endpoints of i. If the endpoints of i
exist in columns m; and m, in O, then given (22)

W= |m2 —m i
w
where w is the number of columns in O.

(23)
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