
1

C-FOREST: Parallel Shortest-Path Planning
with Super Linear Speedup

Michael Otte and Nikolaus Correll

Abstract—C-FOREST is a parallelization framework for single-
query sampling-based shortest-path planning algorithms.Multiple
search-trees are grown in parallel (e.g., 1 per CPU). Each time a
better path is found, it is exchanged between trees so that all trees
can benefit from its data. Specifically, the path’s nodes increase the
other trees’ configuration space visibility, while the length of the
path is used to prune irrelevant nodes and to avoid sampling from
irrelevant portions of the configuration space. Experiments with
a robotic team, a manipulator arm, and the alpha benchmark
demonstrate that C-FOREST achieves significant super linear
speedup in practice for shortest-path planning problems (team
and arm), but not for feasible path panning (alpha).

Index Terms—Path Planning, Robots, Distributed Computing,
Parallelization, Super Linear Speedup, Efficiency.

I. I NTRODUCTION

Path planningalgorithms calculate a sequence of actions that
cause a system to transition from an initial state to a goal state
while avoiding obstacles, and thus facilitate many autonomous
or semi-autonomous applications.

We present a parallelization algorithm for single-query1

shortest-path planning2 called Coupled Forest Of Random
Engrafting Search Trees(C-FOREST). C-FOREST assumes a
distributed architecture in whichT CPUs communicate. Each
CPU builds adifferent search tree between thesame start
and goal states (similar to OR-parallelization [10]). Although
most growth is random and independent, message passing
enables new exploration and pruningof all trees to be a
function of the current best solution known to any tree in
the forest (unlike OR-parallelization, in which each tree grows
completely independently). Nodes from solution branches are
also exchanged so they can be engrafted onto and improved by
the other trees. The latter allows good solutions to be improved
by all trees in the forest, and provides all trees increased
visibility of the configuration space. Figure 1 depicts a simple
2D example with 3 trees (CPUs).

C-FOREST is aparallelization frameworkthat is designed
for single-query shortest-path planning algorithms; thus, it
is not a path-planning algorithmper se. In other words,
C-FOREST is more akin to OR-parallelization than to RRT*.
Indeed, C-FOREST is designed to be used with any random
tree algorithm operating in any configuration space, such that:
(1) the search-tree has almost sure convergence to the optimal

Michael Otte is with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology; However, the majority
of the this work was done when he was at the University of Colorado at
Boulder. Nikolaus Correll is with the Department of Computer Science,
University of Colorado at Boulder. e-mail: ottemw@mit.edu.

1Single-queryplanners are used when the system is expected to
encounter a new configuration space each time it plans [1] (in contrast
multi-queryplanners expect to perform multiple searches through the
same configuration space [2, 3, 4, 5, 6]).

2Shortest-path planningsearches for theshortestvalid path with
respect to a metric [7, 8] (In contrast,Feasible-path planningsearches
for any valid path between start and goal [9]).

A robot (light gray) is planning a route to the tower (dark gray). Each CPU
performs independent random planning until a better solution is found (boldred
path at Left), and then the new solution is exchanged between CPUs.

The length of this solution defines a boundary (red ellipse). Future samples
are drawn from inside the ellipse (because those outside cannot yield better
solutions). This increases the probability of finding an even better solution.
Existing nodes/branches are pruned (light gray), which decreases the time
required to insert future nodes. Sharing the length of the solution (from left
CPU to center and right CPUs) gives the advantages of knowing the left CPU’s
path to all CPUs.

Sharing the pathitself increases the size of the sub-space from which new samples
will yield better paths (dark shaded regions). Thus, sharing the path itself (from
the left CPU to the center and right CPUs) further increases the probability of
finding an even better solution on any/all CPUs.

As more solutions are found (e.g., center CPU), sharing data ensures that all
CPUs can always prune, sample and improve based on the best solution known
to any CPU.

Fig. 1. Example of C-FOREST in 2D Euclidean space. The planning
on each CPU is represented by a different color (Red, Blue, Yellow).

2

solution (i.e., in the limit as time approaches infinity), and (2)
the configuration space obeys the triangle inequality.

A. Super Linear Speedup vs. stopping criterion

Letw1 andwT be the wall time required to solve a particular
problem with 1 or T CPUs, respectively.Speedupis tradi-
tionally definedS = w1/wT , and measures the relative time
benefit of usingT CPUs in parallel. Parallelizationefficiencyis
defined asη = S/T and is inversely proportional to the amount
of electrical power required to solve a problem.

C-FOREST will normally be used with an ‘any-time’ stop-
ping criterion—it will search for better solutions as long as
possible, given constraints imposed by safety, time and/or
energy expenses, etc. However, it can alternatively use a cost-
based stopping criterion—running until the first solution better
than a predefined target costLtarget is found.

By definition, S and η cannot be calculated when an any-
time stopping criterion is used (for any algorithm)—since the
any-time stopping criterion manually setsw1 and wT based
on external factors. Therefore, all discussions on speedup and
efficiency in the current paper refer to theLtarget stopping
criterion, which is also used in our experiments. The results
obtained with theLtarget stopping criterion transfer to the any-
time stopping criterion because they show how much more (or
less) planning time we expect would be required to get the
same result using a differentT . Note that the use of a particular
stopping criterion does not change whether or not an algorithm
(e.g., C-FOREST) has almost sure convergence to the optimal
solution in the limit as time approachesinfinity (i.e., when the
algorithm never stops).

The experiments in Section IV show that C-FOREST can
have super linear speedup (S > T , and η > 1) when the
Ltarget stopping criterion is used—we even observe an average
η > 9 in one scenario. This suggests that serially dividing
computation betweenT trees on1 CPU may also be beneficial
(i.e., emulating a distributed architecture on a singe CPU).
Therefore, we also describe and evaluate the latter idea, which
we call Sequential C-FOREST.

II. RELATED WORK

The path planning problem naturally lends itself to paral-
lelization. Probabilistic Road-Map (PRM), a multi-query al-
gorithm, has been shown to be ‘embarrassingly’ parallel on
memory shared architectures [11]. Each CPU randomly sam-
ples and connects new points to the graph, and approximately
linear speedup is achieved. A similar idea to [11] is presented
in [12], except that RRT and RRT* are parallelized instead
of PRM andη = 1.13 is observed. RRT and RRT* have also
been implemented on a GPU such that obstacle detection is
performed in parallel with sub-linear speedup [13]. [14] im-
plements the kinodynamicPlanning by Interior-Exterior Cell
Exploration algorithm on a shared memory architecture with
sub-linear speedup. In contrast to [11, 12, 13, 14], C-FOREST
assumes a message passing architecture in which CPUs do not
necessarily have access to shared memory, and we observe
greater efficiency—up toη > 9.

OR-parallelization over a message passing architecture is
used for feasible path-planning in [10, 15]. In [10] each

CPU independently builds a random tree, and in [15] each
CPU uses a “quasi-best-first search algorithm with backtrack-
ing.” In either case, no data is exchanged between CPUs
during the search. In contrast, C-FOREST is designed to
solve the shortest-path planning problem and exchanges data
during search. Comparing speedups is arguably unfair because
[10] and [15] solve the feasible-path planning problem while
C-FOREST solves the shortest-path planning problem. How-
ever,η > 1 is observed in both [10], whereη = 1.2, and [15],
whereη = 1.47. In contrast, we observe greater speedup (up
to η > 9). We believe that [15] is the first to suggest that it
may be advantageous to “virtually” parallelize a super linear
distributed algorithm on a single CPU, similar to Sequential
C-FOREST.

The Sampling-based roadmap of trees(SRT) feasible-path
planning algorithm has also been implemented on a message
passing architecture [16]. SRT can be viewed as PRM with
vertices representing trees instead of states. In the distributed
version, master CPUs pick the root node of each tree and
check for tree combinations. Slave CPUs each grow a single
tree that is rooted at adifferent place in the configuration
space.η = 1.12 is observed. In contrast, C-FOREST solves
the shortest-path planning problem, trees are rooted at thesame
location and grown on homogeneous CPUs with one phase of
operation (andη > 9, but different problems are being solved).

This paper extends upon our work onAny-Com ISS[8, 17].
In [8] the multi-robot shortest-path problem is solved in a
distributed manner by a six robot team. [17] extends the idea
for dynamic teams. Trees are assumed to be a unique type
from [8] and the distributed architecture is a multi-robot team
communicating over a wireless network. The current paper
assumes a general message passing architecture, generalizes
our earlier results to other algorithms (in particular RRT*) and
other problem domains (manipulator arms, alpha benchmark).

Multiple trees have also been used for path planning with
non-distributed architectures.Reconfigurable Random Forrest
(RRF) [18] is a replanning algorithm where old trees, dis-
connected by obstacle movement, are saved and tested for
connection vs. the current tree. Updated versions of this idea
are explored by [19] and [20] and calledLazy Reconfiguration
Forest and Multipartite RRTs, respectively. Major distinctions
between these ideas and C-FOREST are that previous work:
grows one tree at a time, assumes a serial architecture, and
solves the feasible-path planning problem.

Any-Time RRTsolves the shortest-path planning problem by
building new trees while time remains, such that each new tree
is guaranteed to be better than its predecessor [21]. A related
idea for the feasible-path planning problem is to restart RRTs
if a solution has not been found before a timeout occurs [22].
Both ideas assume a serial architecture and the next tree is
not started until after the previous tree has been destroyed.
In contrast, C-FOREST builds all trees simultaneously (even
sequential C-FOREST uses time division so that all tees
exist simultaneously). Since multiple trees exist at one time,
cooperation between them contributes to planning progress.

[22] also contains a theoretical analysis applying restarting
theory from [23] to the feasible path planning problem, and
shows that one particularly extreme case of node pruning (e.g.,
pruning the entire tree) can be beneficial. The analysis is the

3

start

goal

P

hs(v)

hg(v)

AL

v

Fig. 2. Boundary beyond which new points cannot lead to better
solutions (dashed-blue). The space within the regionAL and is defined
by hs(v) + hg(v) = L (dashed-red), whereL is the length of the
current best pathPbst (solid-red).

first attempt to quantify an advantage of using multiple trees in
a path-planning algorithm. That said, the results of [22] do not
immediately generalize to the shortest-path planning problem.
This is because algorithms like RRT* rely on asymptotically
dense node coverage (in the limit as time approaches infinity)
to achieve almost sure convergence to the optimal solution
(in the limit as time approaches infinity), and dense node
coverage is impossible when restarting is used. In contrast,
C-FOREST leaves intact the particular nodes required for
almost sure convergence to the optimal solution (in the limit
as time approaches infinity), while pruning only those nodes
that cannot help convergence to the optimal solution.

III. C-FOREST

In the C-FOREST algorithm each CPU builds adifferent
search tree between thesamestart and goal states. Tree growth
happens in two ways. First, normal random tree growth relies
on probabilistically independent node samples until a path is
found. Second, each time a better path is found, it is sent to
every other tree via message passing so that its nodes can be
engrafted. The latter exchange is beneficial in three ways: (1)
All trees expand into regions of the configuration space that
are known to be beneficial by at least one tree. (2) All trees
can prune themselves of globally outdated nodes (i.e., nodes
that will not lead to a better solution). (3) All trees can focus
their search by avoiding regions of the configuration space that
cannot produce globally better solutions. (2) and (3) assume
the existence of an admissible heuristic on path length, but
can significantly reduce the time required to insert new nodes
because node insertion time is dependent on the number of
nodes already in a tree.

A. Definitions

A forestT is a collection ofT = |T| trees. Each treet ∈ T

is a graph consisting of nodes and edges. The prefix ‘t.’ is
used to indicate association with a particular treet. Each node
v ∈ t exists at a particular point in the configuration space
that represents a unique state of the underlying system (e.g.,
the location and orientation of a robot in an environment). Let
S andG represent the sets of all valid start and goal states,
respectively (in practice it is common to have|S| = |G| = 1,

but this need not be the case). Lets ∈ S andg ∈ G. A path
P ⊆ t is composed of a sequence of nodes beginning ats
and ending atg, such that it is both safe and possible for the
system to move from thei-th state to the(i+ 1)-th state. The
current best solutionPbst containsℓ = |Pbst| nodes labeled
Pbst,i for 1 ≤ i ≤ ℓ. We assume that the configuration space
is a metric space with distance metric‖ · ‖ (and so obeys the
triangle inequality).L = ‖Pbst‖ is the length of the best path.

Let h(v1, v2) be an admissible3 heuristic function that
returns an estimate of the distance betweenv1 and v2. In
the case of multiple goal statesh(v1,G) is assumed to
be admissible over the entire set of goals4. More accurate
estimates returned byh(v1, v2) will increase performance, but
if no suitable heuristic can be found then it is possible to define
h(v1, v2) ≡ 0. Let hs(v) = h(s, v) andhg(v) = h(v,G). Let
t.ds(v) be the actual distance from the start tov through treet.
The tree that discoveredPbst is tbst andL = tbst.ds(g) where
g ∈ tbst. Assuming that at least one path to the goal has been
found, any pointv for which hs(v) + hg(v) ≥ L cannot pos-
sibly lead to a betterPbst. Geometrically,hs(v) + hg(v) = L
describes the boundary of an open set in the search space
(Figure 2). LetAL be the Lebesgue measure of this open set.
For the case of a single goal (G = {g}) in Euclidean space
AL is bounded by an ellipsoid.

B. Algorithm

The C-FOREST algorithm is displayed in Figure 3-Left-Top.
Pbst is initialized to the empty set and its length to∞ (lines 1-
2). Next,T trees are started, each on their own CPU (lines 3-4).
Each treet is an independent version of a random search tree
(e.g., RRT*). The subroutineStopCriterion() returnstrue
once the stopping criterion has been met, otherwise it returns
false. Once the allotted planning time has been exhausted, the
best solution is returned (lines 5-7).

Most computation happens inRandomTree(t) (Figure 3-
Middle-Top). t initializes t.Pbst to the empty set andt.L to
∞ (lines 1-2). Search happens by picking a random point
v from the configuration space usingRandomPoint(L)
and then inserting it intot with t.Insert(v) (lines 4-5).
RandomPoint(L) andInsert(v) are assumed to incorpo-
rate any specific logic required by the underlying random tree
algorithm and/or configuration space. If addingv leads to a
(globally) better path, then the newPbst is sent to the other
trees (lines 7-8). If a better solution is found by another tree,
then it is added to the local tree usingAddPath(Pbst) (lines
11-15). The local tree is pruned based on the global value ofL
usingt.Prune(L) (lines 9 and 14), and the sampling bounds
are updated usingt.SetSampleBounds(L) (lines 10 and
15).

The subroutineAddPath(Pbst) is shown in Figure 3-Left-
Center. Line 1 iterates over nodes inPbst from start to goal (the
start node does not need to be inserted, since it is guaranteed to
exist in t). The subroutinet.InTree(Pbst,i) checks ifPbst,i

is already int to avoid duplicating points (line 2). IfPbst,i does
not exist int then it is inserted on line 3.Insert(v,Pbst,i−1)
is a modified version ofInsert(v) that explicitly includes

3h(v1, v2) will never overestimate the distance betweenv1 andv2.
4h(v1,G) ≤ the distance fromv1 to any and allg ∈ G.

4

CFOREST()

1: L = ∞
2: Pbst = ∅
3: for ∀t ∈ T do
4: RandomTree(t)

on its own CPU
5: while not StopCriterion() do
6: sleep
7: Return (L,Pbst)

t.AddPath(Pbst)

1: for i = 2 to |Pbst| do
2: if not t.InTree(Pbst,i) then
3: t.Insert(Pbst,i,Pbst,i−1)

v = RandomPoint(L)

1: repeat
2: v = (Rand(0, 1) ∗ (c− b)) + b
3: until hs(v) + hg(v) < L

RandomTree(t)

1: t.Insert(s)
2: t.L = ∞
3: t.Pbst = ∅
4: while StopCriterion() do
5: v = RandomPoint(L)
6: t.Insert(v)
7: if t.L < L then
8: Pbst = t.Pbst

9: L = t.L
10: t.Prune(L)
11: t.SetSampleBounds(L)
12: else ifL < t.L then
13: t.AddPath(Pbst)
14: t.L = L
15: t.Prune(L)
16: t.SetSampleBounds(L)

t.Prune(L)

1: for ∀ nodesn ∈ t do
2: if hs(n) + hg(n) ≥ L then
3: removen and its descendants

t.Insert(v)

1: pv = prospective parent ofv according to the random
tree algorithm being used

2: if t.ds(pv) + h(pv , v) + hg(v) < L then
3: insertv according to the random tree algorithm

t.Insert(v, pbst)

1: pv = prospective parent ofv according to the random
tree algorithm being used

2: if t.ds(pv) + h(pv , v) < t.ds(pbst) + h(pbst, v)
then

3: if t.ds(pv) + h(pv , v) + hg(v) < L then
4: insertv according to the random tree algorithm
5: else if t.ds(pbst) + h(pbst, v) + hg(v) < L then
6: insert v according to the random tree algorithm

with pbst as its parent

SetSampleBounds(L)

1: a = (L− |s− g|)/2
2: b = max {min{s, g} − a,MinBounds()}
3: c = min {max{s, g}+ a,MaxBounds()}

Fig. 3. Algorithm for C-FOREST (Left-Top) and selected subroutines. Note that any random tree algorithm can be used as a template for
RandomTree(t), as long as it provides the necessary subroutines.MinBounds() andMaxBounds() return the minimum and maximum
coordinates of the configuration space along each dimension.

Pbst,i−1 in the possible neighbor set, but is otherwise identical.
This ensures thatPbst,i−1 can be the parent ofPbst,i, but
allows better nodes to be used if they exist.

We can ignore points not inAL for random sampling
(RandomPoint(L), line 6, Figure 3). We can also prune
nodes not in AL (as is done inPrune(L), line 2).
Sampling directly fromAL can be difficult in practice.
Instead, we perform initial sampling from the hypercube
described byhs(v) + hg(v) < L per each dimension
(SetSampleBounds(L), lines 1-3), and then disregard
points outsideAL (RandomPoint(L), lines 1-3).

We have also found it useful to disregard any points for
which t.ds(v) + hg(v) ≥ L (Insert(v), line 2). That is,
points that cannot lead to a better solution given their current
distance-to-root through the tree plus the heuristic estimate of
the distance to goal. This is a greedy strategy, since it does not
account for the fact that future tree-remodeling may decrease
t.ds(v), and is similar to the priority heap weight used in the
A* algorithm. We also prune the descendants of pruned nodes
in a similar greedy approach (Prune(L), line 3).

C. Runtime Analysis

The runtime of C-FOREST is a combination of two things:
(1) the inherited runtime, per node, of the particular underlying
random tree algorithm (e.g., for RRT*O(c log(n)), where
c is a predefined constant depending on dimensionality, and
n is the number of nodes already in the tree), and (2) the
time associated with sending and receiving messages. Sending
a message requires timeO(ℓ) and receiving it requires time
O(ℓ+ g(n) +

∑ℓ

i=1
f(i)), whereg(n) is the time required to

prune nodes from the tree based on‖Pbst‖, and f(i) is the
time required to insert thei-th node ofPbst into the tree and
is also function of the underlying random tree algorithm (for
RRT* f(i) = c log(n+ i)).

SequentialCFOREST()
1: L = ∞
2: Pbst = ∅
3: for ∀t ∈ T do
4: t.L = ∞
5: t.Pbst = ∅
6: while not

StopCriterion() do
7: for ∀t ∈ T do
8: RandTree(t)
9: Return (L,Pbst)

RandomTree(t)
1: if L < t.L then
2: t.AddPath(Pbst)
3: t.L = L
4: t.prune(L)
5: t.SetSampleBounds(L)
6: while TreeTimeLeft()

and TimeLeft() do
7: v = t.RandPoint(L)
8: t.Insert(v)
9: if t.L < L then

10: Pbst = t.Pbst

11: L = t.L
12: Return

Fig. 4. Sequential C-FOREST (left), andRandomTree(t) (right).
Note that any random-tree algorithm can be used as a template for
RandomTree(t), as long as it provides the necessary subroutines.
Subroutines are described in Figure 3.

D. Sequential C-FOREST

It is possible to run any distributed algorithm on a serial
architecture by using avirtual distributed architecture—where
time division on a single CPU simulates having multiple CPUs
[15]. The granularity of time division must be many orders
of magnitude smaller than the total running time because
each virtual CPU experiences a communication lag whenever
it is not running. A full-blown virtual distributed architec-
ture contributes additional overhead (e.g., messaging between
CPUs) and is unnecessary for our task. Instead, we propose
a sequential version of C-FOREST that is allotted1/T -th of
the computation time on a single CPU for each treet ∈ T.
The algorithm is presented in Figure 4. The amount of time
allotted to each tree per iteration is small (e.g., on the order of
0.01 second), so that many loops through the forest occur over
the course of the search. The subroutineTreeTimeLeft()
returns true if there is still time for treet to plan during
the current planning iteration. The rest of the subroutines are
identical to those described in Figure 3 in Section III.

5

0

10

20

30

40

50

60 0

10

20

30

0

10

20

Fig. 5. 7 DOF arm with end-effector path (Left). The Alpha-1.5
feasible path-planning benchmark problem (Right).

Fig. 6. Toy and Office environments used in experiment groups
2 and 3 with sample paths. Goal regions appear rectangular and
robot starting locations are circular.

The algorithm moves to the next tree as soon as the previous
tree has found a solution, even if time remains for the previous
tree (RandTree(t), line 12). We have found this to help
during the early phases of search because the next tree can
focus on improving the current best solution. This can quickly
reduce the search envelope at the beginning of the search, with
positive effects that propagate forward with time.

Speedupequals efficiency for Sequential C-FOREST be-
cause only one CPU is used. Thus, while parallel C-FOREST
can be useful whenη < 1, sequential C-FOREST shouldonly
be used whenη > 1.

IV. EXPERIMENTS

We perform five sets of experiments involving four different
planning problems. The first four experiments include: a seven
degree-of-freedom manipulator arm, a multi-robot team in two
different environments (office and toy, respectively), and the
classic alpha-1.5 feasible-path planning benchmark problem
[24]. The problems are illustrated in Figures 5 and 6. In the fifth
experiment we evaluate the relative benefits of path sharing
vs. path-length based pruning and sampling envelope reduction
in the multi-robot team office problem. We use RRT* as the
underlying random tree in all experiments.

Our parallel architecture contains64 single CPU computers
that communicate over a network, each CPU has a 1.2 GHz
Xeon processor. Our serial architecture is a standard desk-
top computer with 1 CPU and a 1.596 GHz processor, all
computers run the Ubuntu operating system. On the parallel
architecture each C-FOREST or OR-parallelization tree is run
on its own computer. On the serial architecture each tree plans

Arm Experiment, Parallel Architecture,
1 to 64 CPUs, 1 tree per CPU

 1 8 16 32 64
 1

 10

100

 1 8 16 32 64
 1

 10

100

 130

 140

 150

 170

 200

T
im

e

C − FOREST OR − Parallel

Ltarget

 1 8 16 32 64
 0

 25

 50

 75

100

125

150

 1 8 16 32 64
 0

 25

 50

 75

100

125

150

 130

 140

 150

 170

 200

S
p
e
e
d
u
p

Ltarget

S=T

 1 8 16 32 64
 0

0.5

 1

1.5

 2

2.5

 3

3.5

 1 8 16 32 64
 0

0.5

 1

1.5

 2

2.5

 3

3.5

 130

 140

 150

 170

 200E
ffi
c
ie
n
c
y

T = CPUs T = CPUs

Ltarget

η=1

Arm Experiment, Serial Architecture, 1 to 64 trees on 1 CPU

 1 8 16 32 64
 2

 5

 10

 20

 50

100

200

 1 8 16 32 64
 2

 5

 10

 20

 50

100

200

 130

 140

 150

 170

 200

T
im

e
C − FOREST OR − Parallel

Ltarget

 1 8 16 32 64
0
1
2
3
4
5
6
7
8

 1 8 16 32 64
0
1
2
3
4
5
6
7
8

 130

 140

 150

 170

 200

S
p
e
e
d
u
p
=

E
ffi
c
ie
n
c
y

T T

Ltarget

η=1

Fig. 7. 7 DOF arm. Color is target path length (Ltarget). Dashed
lines show linear speedup (η = 1 andS = T) with respect to CPUs.
Left and Right: C-FOREST and OR, respectively. Top three rows:
time (mean, standard error), speedup, and efficiency for the parallel
architecture using 1-64 CPUs, 1 tree per CPU (32 runs per data-
point). Bottom two rows: time (mean, standard error), and speedup
= efficiency for the serial architecture with 1-64 trees on a single CPU
(35 runs per data-point),S = E because 1 CPU is used.

for 1ms at a time.Note that on the serial architecture efficiency
equals speedup—because 1 CPU is used and efficiency is
defined as speedup divided by the number CPUs. For brevity,
we depict efficiency and speedup on the same plot for the serial
algorithms.

A. C-FOREST vs. OR algorithms

In the first four experiments we evaluate the performance of
C-FOREST vs. OR-parallelization using a distributed architec-
ture, and the performance of C-FOREST vs. OR-serialization
using a sequential architecture. OR-parallelization growsT
trees in parallel thatdo not communicateduring search. OR-
serialization is a 1-CPU version of OR-parallelization where

6

4 Robot Team Office Experiment, Parallel Architecture,
1 to 64 CPUs, 1 tree per CPU

 1 8 16 32 64
0.1

 1

 10

100

 1 8 16 32 64
0.1

 1

 10

100

 30.0

 32.5

 35.0

 40.0

 50.0

T
im

e

C − FOREST OR − Parallel

Ltarget

 1 8 16 32 64
 0

100

200

300

400

 1 8 16 32 64
 0

100

200

300

400

 30.0

 32.5

 35.0

 40.0

 50.0

S
p
e
e
d
u
p

Ltarget

S=T

 1 8 16 32 64
 0

 2

 4

 6

 8

10

 1 8 16 32 64
 0

 2

 4

 6

 8

10

 30.0

 32.5

 35.0

 40.0

 50.0E
ffi
c
ie
n
c
y

T = CPUs T = CPUs

Ltarget

η=1

4 Robot Team Office Experiment Experiment, Serial Architecture,
1 to 64 trees on 1 CPU

 1 8 16 32 64

 10

 20

 50

100

200

 1 8 16 32 64

 10

 20

 50

100

200

 30.0

 32.5

 35.0

 40.0

 50.0

T
im

e

C − FOREST OR − Parallel

Ltarget

 1 8 16 32 64
 0

 5

10

15

20

25

 1 8 16 32 64
 0

 5

10

15

20

25

 30.0

 32.5

 35.0

 40.0

 50.0

S
p
e
e
d
u
p
=

E
ffi
c
ie
n
c
y

T T

Ltarget

η=1

Fig. 8. 4 robot team in an office environment. Color is target
path length (Ltarget). Dashed lines show linear speedup (η = 1 and
S = T) with respect to CPUs. Left and Right: C-FOREST and OR,
respectively. Top three rows: time (mean, standard error), speedup, and
efficiency for the parallel architecture using 1-64 CPUs, 1 tree per CPU
(32 runs per data-point). Bottom two rows: time (mean, standard error),
and speedup = efficiency for the serial architecture with 1-64 trees on
a single CPU (50 runs per data-point),S = E because 1 CPU is used.

computation is serially divided between non-communicating
trees. Comparison of the C-FOREST algorithms to the OR
algorithms is useful because it demonstrates the added advan-
tage of sharing dataduring planningvs. the purely statistical
benefits of drawing multiple random samples from the set of
all paths, respectively.

For each combination of planning problem, architecture,
and{C-FOREST, OR-parallelization} we perform repeated tri-
als for T = {1, 2, 4, 8, 16, 32, 64} and vs. differentLtarget

(e.g., path length quality targets). The values ofLtarget are
chosen to provide points along a spectrum of varying degrees
of difficulty. The bounds of this spectrum are defined by the
performance of a single tree, such that problems with relatively

4 Robot Team Block Experiment, Parallel Architecture,
1 to 64 CPUs, 1 tree per CPU

 1 8 16 32 64
0.01

 0.1

 1

 10

 100

 1 8 16 32 64
0.01

 0.1

 1

 10

 100

 44.5

 45.0

 46.0

 48.0

 52.0

T
im

e

C − FOREST OR − Parallel

Ltarget

 1 8 16 32 64
 0

 25

 50

 75

100

125

 1 8 16 32 64
 0

 25

 50

 75

100

125

 44.5

 45.0

 46.0

 48.0

 52.0

S
p
e
e
d
u
p

Ltarget

S=T

 1 8 16 32 64
 0

0.5

 1

1.5

 2

2.5

 1 8 16 32 64
 0

0.5

 1

1.5

 2

2.5

 44.5

 45.0

 46.0

 48.0

 52.0E
ffi
c
ie
n
c
y

T = CPUs T = CPUs

Ltarget

η=1

4 Robot Team Block Experiment Experiment, Serial Architecture,
1 to 64 trees on 1 CPU

 1 8 16 32 64

0.1

 1

 10

100

 1 8 16 32 64

0.1

 1

 10

100

 44.5

 45.0

 46.0

 48.0

 52.0

T
im

e

C − FOREST OR − Parallel

Ltarget

 1 8 16 32 64
0

2

4

6

8

 1 8 16 32 64
0

2

4

6

8

 44.5

 45.0

 46.0

 48.0

 52.0

S
p
e
e
d
u
p
=

E
ffi
c
ie
n
c
y

T T

Ltarget

η=1

Fig. 9. 4 robot team in block environment. Color is target pathlength
(Ltarget). Dashed lines show linear speedup (η = 1 andS = T) with
respect to CPUs. Left and Right: C-FOREST and OR, respectively.
Top three rows: time (mean, standard error), speedup, and efficiency
for the parallel architecture using 1-64 CPUs, 1 tree per CPU(32 runs
per data-point). Bottom two rows: time (mean, standard error), and
speedup = efficiency for the serial architecture with 1-64 trees on a
single CPU (50 runs per data-point),S = E because 1 CPU is used.

easy path-lengths are solved as soon as the first valid path is
found, and relatively hard path-lengths are solved in three to
five minutes, on average, depending on experiment.

The number of repeated trials represented by each data point
varies by experiment. 32 repeated trials are performed per data
point for all tests involving C-FOREST and OR-parallelization.
For test involving sequential C-FOREST and OR-serialization,
35, 50, 50, and 20 trials are performed per data point in the arm,
team office, team toy, and alpha-1.5 problems, respectively.
This results in a total of18, 354 individual trials.

Figures 7, 8, 9, and 10 display experimental results for the
seven degree-of-freedom manipulator arm, multi-robot team
in the office environment, multi-robot team in a simple toy

7

Alpha 1.5 Experiment, Parallel Architecture,
1 to 64 CPUs, 1 tree per CPU

 1 8 16 32 64
 35

 50

100

150

200
250

 1 8 16 32 64
 35

 50

100

150

200
250

 150

 170

 210

T
im

e

C − FOREST OR − Parallel

Ltarget

 1 8 16 32 64
 0

0.5

 1

1.5

 2

2.5

 3

3.5

 1 8 16 32 64
 0

0.5

 1

1.5

 2

2.5

 3

3.5

 150

 170

 210

S
p
e
e
d
u
p Ltarget

S=T

 1 8 16 32 64
 0

0.2

0.4

0.6

0.8

 1

1.2

1.4

 1 8 16 32 64
 0

0.2

0.4

0.6

0.8

 1

1.2

1.4

 150

 170

 210

E
ffi
c
ie
n
c
y

T = CPUs T = CPUs

Ltarget

η=1

Alpha 1.5 Experiment, Serial Architecture, 1 to 64 trees on 1 CPU

 1 8 16 32 64
 20

 50

 100

 200

 500

1000

 1 8 16 32 64
 20

 50

 100

 200

 500

1000

 150

 170

 210

T
im

e

C − FOREST OR − Parallel

Ltarget

 1 8 16 32 64
 0

0.5

 1

1.5

 2

 1 8 16 32 64
 0

0.5

 1

1.5

 2

 150

 170

 210

S
p
e
e
d
u
p
=

E
ffi
c
ie
n
c
y

T T

Ltarget

η=1

Fig. 10. Alpha-1.5 experiment. Color is target path length (Ltarget).
Dashed lines show linear speedup (η = 1 andS = T) with respect to
CPUs. Left and Right: C-FOREST and OR, respectively. Top three
rows: time (mean, standard error), speedup, and efficiency forthe
parallel architecture using 1-64 CPUs, 1 tree per CPU (32 runs per
data-point). Bottom two rows: time (mean, standard error), and speedup
= efficiency for the serial architecture with 1-64 trees on a single CPU
(20 runs per data-point),S = E because 1 CPU is used.

environment, and the alpha-1.5 problem, respectively. The
organization of each figure is identical as follows: Left and
right columns show results for C-FOREST algorithms and OR
algorithms, respectively. The top three rows show total time,
efficiency, and speedup for C-FOREST vs. OR-parallelization.
The bottom two show total time and speedup (efficiency) for
sequential C-FOREST vs. OR-serialization.

When T = 1, the resulting algorithm is equivalent to the
underlying random-tree algorithm (e.g., RRT*).

The Arm and Office Team experiments are representative
of standard robotic path planning problems. In the first, a 7-
DOF manipulator arm (Figure 5) must plan around an obstacle.
Distance is defined as the total distance traveled by the end-

effector of the arm. This is useful when we want to minimize
the distance traveled by whatever the arm is holding.

In the second experiment the centralized multi-robot plan-
ning framework5 is used for a team of four robots moving in an
office environment. Distance is defined as euclidean distance
through the combined configuration space of all robots.

The third experiment is similar to the second, except that
the 4-robot team must exchange places around a block shaped
obstacle (Figure 6-left). It is designed to evaluate C-FOREST
vs. OR in an easy environment and test our analytical result
that C-FOREST is less likely to have super-linear speedup in
such a case.

The fourth experiment is the Alpha-1.5 benchmark problem
[24]. It consists of two metal “wires” that are twisted around
each other. The problem is solved when the wires are separated.
The Alpha family of problems is a classic feasible-path plan-
ning scenario. Although C-FOREST is designed as a shortest-
path planning algorithm, this experiment tests how well it fares
in the feasible-path planning domain—where simply finding
a viable solution is quite challenging. We use the Alpha-
1.5 benchmark (vs. Alpha-1.0) because harder versions of the
problem could not be solved by either C-FOREST or the OR
algorithm within an amount of time that was conducive to
running repeated trials (in fact, we failed to find a solution on
Alpha-1.0 after running for more than an hour). We calculate
distance using the method presented in [25]—i.e., as a weighted
sum of (A) the magnitude of translation, and (B) a function of
the inner-product between quaternions (Algorithm 5 in, [25]).
We choose these weights such that that a 180 degree pure
rotation has the same distance as the longest dimension of the
(bent) wire.

B. C-FOREST solution sharing vs. pruning

C-FOREST differs from OR-parallelization in two ways:
first, it shares paths between trees during planning; and second,
it prunes old nodes and samples new ones based on the lengths
of those shared paths. In order to assess the relative effects
of these two differences, we rerun the office environment
experiment forLtarget = 30 meters with modified versions of
the algorithm that: (1) do not prune or decrease the sampling
envelope based onL, or (2) do not share and engraft the current
best solution (lengthL is still shared and used for pruning and
sampling envelope reduction). Figure 11 depicts the planning
times and efficiencies for the parallel and sequential versions
of C-FOREST (top and bottom sub-figures, respectively).

V. D ISCUSSION OF RESULTS

A. C-FOREST vs. OR for shortest-path planning

On shortest-path planning problems (i.e., the first three ex-
periments) parallel C-FOREST outperforms OR-parallelization
and sequential C-FOREST outperforms OR-serialization, in
general. The few exceptions to this trend occur for target-
lengths that allow relatively little time to improve upon an

5In the centralized multi-robot planning framework all robot are
viewed as individual pieces of a single larger robot. The configuration
space is the Cartesian product of all individual robots’ configuration
spaces. If the team consists of four holonomic 2D robots, thenthe
configuration space has a total of eight degrees-of-freedom.

8

C-FOREST, Team Office Experiment
Parallel Architecture, Serial Architecture,

1 to 64 CPUs, 1 tree per CPU 1 to 64 trees on 1 CPU

 1 8 16 32 64

 1

 10

100

baseline

no sample adjust

no path shareT
im

e

version

 1 8 16 32 64
 10

 20

 50

100

200

500

T
im

e

 1 8 16 32 64
 0

100

200

300

400

baseline

no sample adjust

no path share

S
p
e
e
d
u
p

version

S=T

 1 8 16 32 64
 0

 3

 6

 9

12

15

S
p
e
e
d
u
p
=

E
ffi
c
ie
n
c
y

T

 1 8 16 32 64
 0

 2

 4

 6

 8

10

baseline

no sample adjust

no path share

E
ffi
c
ie
n
c
y

T = CPUs

version

η=1

Fig. 11. C-FOREST variants on the office problem for
Ltarget = 30m. “Baseline” (yellow) is C-FOREST or sequential C-
FOREST (left or right, respectively), “no sample adjust” (teal) is a
variant that does not decrease the sampling envelope, “no path share”
(blue) is a variant that does not engraft solutions (solution lengths are
still shared). Left: time (mean, standard error), speedup, and efficiency
for the parallel architecture using 1-64 CPUs, 1 tree per CPU(32 runs
per data-point). Right: time and speedup = efficiency for the serial
architecture with 1-64 trees on a single CPU (35 runs per data-point).
S = E for the serial architecture because 1 CPU is used.

initial solution. C-FOREST algorithms have increasingly better
speedup vs. the OR algorithms asLtarget decreases—i.e.,
when the time used to improve a sub-optimal solution repre-
sents a larger percentage of total planning time. This reflects the
fact that C-FOREST trees only work together after the initial
solution is found (before the initial solution is found, there is
no difference between C-FOREST and OR-parallelization).

Although the OR algorithms do exhibit super-linear speedup
in many cases, the speedup of the C-FOREST algorithms is
greater—by up to an order of magnitude.

Intuitively, exchanging paths is beneficial because bottle-
necks and other obstructions can make exploring the space
difficult, and finding a close-to-optimal solution unlikely. If
the optimal path passes through multiple bottlenecks and/or
snakes around multiple obstaclesbut other sub-optimal routes
to the goal also exist; then only onet ∈ T must get lucky per
bottleneck/obstacle, instead of requiring a particulart to get
lucky per all bottlenecks/obstacles—the latter is less likely.

Coupled sampling is beneficial because it allows all trees
to focus effort on exploring only regions of the configuration
that can possibly lead to better solutions. Coupled pruning is
beneficial because it reduces the amount of work required to
insert new nodes into each tree.

B. Shortest-path planning vs. feasible-path planning

C-FOREST has super linear speedup on all of the planning
problems that come form the shortest-path planning domain
(sometimes above 350), many efficiencies greater than 2, and
some greater than 9; and Sequential C-FOREST algorithm has
speedups as high as 20. In contrast, the speedups of C-FOREST
and Sequential C-FOREST (and also the OR algorithms) are
nearly always sub-linear on the Alpha-1.5 benchmark, which
is a classic feasible path planning problem. This suggests that
speedup is more likely to occur on problems for which an
initial solution is relatively easy to find, compared to one with
lengthLtarget—for instance, when most of the planning time
is spent improving a sub-optimal solution vs. simply finding
an initial solution. It also suggests that C-FOREST is no better
than OR-parallelization forfeasiblepath-planning.

C. Exchanging paths vs. path lengths

Although sending an entire path requires more time and
space than sending only its length, our results suggest that
doing so is worth the price. This is indicated by experiment
five (see Figure 11), where forests that do not share nodes
exhibit relatively low efficiencies (slightly above1). That said,
reducing the sampling envelope does have a noticeable effect
in all experiments.

D. T and Efficiency

Forests (T > 1) find the target solution more quickly, on
average, than a stand alone tree (T = 1) in all experiments.
However, in our experiments the best efficiencies for C-
FOREST are observed whenT < 64 (i.e., not with the most
trees). Thus, with respect to efficiency, there may be an inherent
limit to the cost-savings C-FOREST can provide. The observed
power savings of up to89% (for η ≈ 9.4) is quite decent.
Sequential C-FOREST attained an even better power savings
of 95% (for η ≈ 23.6). In fact, C-FOREST withT > 1 yields a
better efficiency thanT = 1 in nearly all shortest-path planning
experiments.

An explicit method of selectingT to achieve the maximum
efficiency is beyond the scope of the current paper. However,
our results suggest that performance is stable vs.T (e.g., using
an algorithm with30% more or less trees has a relatively small
effect on solution quality vs. time), and that it is better to
error on the side of using too many trees than not enough.
We believe that calibratingT on a similar problem will give a
decent approximation to its optimal value, since there appears
to be ample room for error.

E. Causes for C-Forest’s super linear performance

C-FOREST exhibits super-linear speedup because it allows
multiple trees to actively cooperate during the search for better
and better solutions. In particular, sharing the nodes of the
current best path appears to be the most helpful aspect of
the algorithm6 (as suggested by experiment five). The latter is
advantageous because it biases all trees to be populated with
nodes from “useful” locations in the search space, and allows
each tree’s visibility envelope to expand into nearby regions.

6Coupled sampling and pruning operations, and the statistical ad-
vantages of building multiple random trees in parallel are also helpful.

9

VI. CONCLUSIONS

C-FOREST allows multiple trees to actively cooperate dur-
ing the search for better and better solutions. Experimental
results suggest C-FOREST will perform better when: (1) an
initial solution can be found in a fraction of the total planning
time, (2) finding a relatively good solution is difficult. Further,
most of C-FOREST’s performance gains appear to come from
sharing the nodes of the current best-path.

Both C-FOREST and OR-parallelization achieve super-
linear speedup on the shortest-path planning problem; however,
the speedup observed with C-FOREST is up to an order
of magnitude greater. To the best of our knowledge, the
best average efficiency observed with C-FOREST (η > 9.4)
is significantly greater than any previous result observed in
distributed single-query planning. Speedup valuesS > 300
are also observed; as well as speedup (and efficiency) of
S = η > 23.6 for Sequential C-FOREST.

REFERENCES

[1] I. A. Sucan and L. E. Kavraki, “On the implementation of
single-query sampling-based motion planners,” inIEEE
International Conference on Robotics and Automation,
2010, pp. 2005–2011.

[2] M. Overmars and P. Svestka, “A probabilistic learning ap-
proach to motion planning,” inAlgorithmic Foundations
of Robotics (WAFR), 1995, pp. 19–37.

[3] Y. Koga and J.-C. Latombe, “On multi-arm manipulation
planning,” in Proc. IEEE International Conference on
Robotics and Automation, vol. 2, 1994, pp. 945–952.

[4] G. Sanchez and J.-C. Latombe, “On delaying collision
checking in prm planning: Application to multi-robot
coordination,”The international Journal of Robotics Re-
search, vol. 21, pp. 5–26, 2002.

[5] ——, “Using a prm planner to compare centralized and
decoupled planning for multi robot systems,” inProc.
IEEE International Conference on Robotics and Automa-
tion, vol. 2, 2002, pp. 2112–2119.

[6] C. M. Clark, S. M. Rock, and J.-C. Latombe, “Dynamic
networks for motion planning in multi-robot space sys-
tems,” in International Symposium on Artificial Intel-
ligence, Robotics and Automation in Space, 2003, pp.
3621–3631.

[7] S. Karaman and E. Frazzoli, “Incremental sampling-based
algorithms for optimal motion planning,” inProceedings
of Robotics: Science and Systems, 2010.

[8] M. Otte and N. Correll, “Any-com multi-robot path-
planning: Maximizing collaboration for variable band-
width,” in Proc. International Symposium on Distributed
Autonomous Robotics Systems, 2010.

[9] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring
random trees: Progress and prospects,” inAlgorithmic and
Computational Robotics: New Directions, 2001, pp. 293–
308.

[10] S. Caselli and M. Reggiani, “Randomized motion plan-
ning on parallel and distributed architectures,” inEuromi-
cro Workshop on Parallel and Distributed Processing,
1999, pp. 297–304.

[11] N. M. Amato and L. K. Dale, “Probabilistic roadmap
methods are embarrassingly parallel,” inProc. IEEE
International Conference on Robotics and Automation,
1999, pp. 688–694.

[12] J. Ichnowski and R. Alterovitz, “Parallel sampling-based
motion planning with superlinear speedup,” inIn Proc.
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2012.

[13] Bialkowski, Karaman, and Frazzoli, “Massively paral-
lelizing the RRT and the RRT*,” inProceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2011.

[14] I. A. Sucan and L. E. Kavraki, “Kinodynamic motion
planning by interior-exterior cell exploration,” inAl-
gorithmic Foundation of Robotics VIII (Proceedings of
Workshop on the Algorithmic Foundations of Robotics),
STAR, 2009, pp. 449–464.

[15] D. J. Challou, M. Gini, and V. Kumar, “Parallel search
algorithms for robot motion planning,” inIEEE Interna-
tional Conference on Robotics and Automation, 1993, pp.
46–51.

[16] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and
L. E. Kavraki, “Sampling-based roadmap of trees for par-
allel motion planning,”IEEE Transactions on Robotics,
vol. 21, pp. 587–608, 2005.

[17] M. Otte and N. Correll, “Any-com multi-robot path-
planning with dynamic teams: Multi-robot coordination
under communication constraints,” inProc. International
Symposium on Experimental Robotics, 2010.

[18] T.-Y. Li and Y.-C. Shie, “An incremental learning ap-
proach to motion planning with roadmap management,”
in IEEE International Conference on Robotics and Au-
tomation, 2002, pp. 3411–3416.

[19] R. Gayle, K. R. Klingler, and P. G. Xavier, “Lazy recon-
figuration forest (LRF) - an approach for motion planning
with multiple tasks in dynamic environments.” 2007, pp.
1316–1323.

[20] M. Zucker, J. J. Kuffner, and M. S. Branicky, “Multipar-
tite RRTs for rapid replanning in dynamic environments,”
in International Conference on Robotics and Automation,
2007, pp. 1603–1609.

[21] D. Ferguson and A. Stentz, “Anytime RRTs,” inProc.
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2006, pp. 5369–5375.

[22] N. A. Wedge and M. S. Branicky, “On heavy-tailed
runtimes and restarts in rapidly-exploring random trees,”
in AAAI Conference on Artificial Intelligence, 2008.

[23] M. Luby, A. Sinclair, and D. Zuckerman, “Speedup of
las vegas algorithms,” inIn Proc. of the 2nd Israel
Symposium on the Theory of Computing and Systems,
1993, pp. 128–133.

[24] B. Yamrom, “Alpha puzzle,” Provided by GE
Corporate Research & Development Center,
via Parasol Lab at Texas A & M University,
http://parasol.tamu.edu/dsmft/benchmarks/mp/.

[25] J. J. Kuffner, “Effective sampling and distance metrics for
3d rigid body path planning,” inProc. IEEE Conference
on Robotics and Automation, 2004.

