C-FOREST: Parallel Shortest-Path Planning
with Super Linear Speedup

Michael Otte and Nikolaus Correll

Abstract—C-FOREST is a parallelization framework for single-
query sampling-based shortest-path planning algorithmsMultiple
search-trees are grown in parallel (e.g., 1 per CPU). Eachrie a
better path is found, it is exchanged between trees so thatlatees
can benefit from its data. Specifically, the path’s nodes in@ase the .
other trees’ configuration space visibility, while the lengh of the A robot (light gray) is planning a route to the tower (dark gray). Each CPU
path is used to prune irrelevant nodes and to avoid samplingrm performs independent random planning until a better solution is found (edid
irrelevant portions of the configuration space. Experimens with path at Left), and then the new solution is exchanged between CPUs.
a robotic team, a manipulator arm, and the alpha benchmark
demonstrate that C-FOREST achieves significant super linear
speedup in practice for shortest-path planning problems gam
and arm), but not for feasible path panning (alpha).

Index Terms—Path Planning, Robots, Distributed Computing,
Parallelization, Super Linear Speedup, Efficiency.

I. INTRODUCTION

Path planningalgorithms calculate a sequence of actions that
cause a system to transition from an initial state to a goal state

while avoiding obstacles, and thus facilitate many autonomo(j&¢ 'ength of this solution defines a boundary (red ellipse). Future samples
are drawn from inside the ellipse (because those outside cannot yield better

or semi-autonomous applications. solutions). This increases the probability of finding an even better isolut
We present a parallelization algorithm for Sing|e_qderyExiSting nodes/branches are pruned (light gray), which decreases the time
hortest-path bl iR lled C led Forest Of Rand required to insert future nodes. Sharing the length of the solution (from left
shor es_ -pa planningcalle ouple res andom cpy 1o center and right CPUs) gives the advantages of knowing the left CPU’s
Engrafting Search TreefC-FOREST). C-FOREST assumes aath to all CPUs.
distributed architecture in whicl CPUs communicate. Each
CPU builds adifferent search tree between thgame start
and goal states (similar to OR-parallelization [10]). Althoug
most growth is random and independent, message pas
enables new exploration and pruniraf all treesto be a
function of the current best solution known to any tree i
the forest (unlike OR-parallelization, in which each tree gro
completely independently). Nodes from solution branches
also exchanged so they can be engrafted onto and improve
the other trees. The latter allows good solutions to be improvi

by all trees in the forest, and provides all trees increas M e patitselfi the size of the sub ‘ hich |
S aring the patftselfincreases the size of the sub-space from which new samples
VISIbI|Ity of the Conflguratlon space. Figure 1 depICtS a SImpI%ill yield better paths (dark shaded regions). Thus, sharing the path itsetf (fro

2D example with 3 trees (CPUs). the left CPU to the center and right CPUs) further increases the probability of
C-FOREST is gparallelization frameworkhat is designed finding an even better solution on any/all CPUs.
for single-query shortest-path planning algorithms; thus, /*
is not a path-planning algorithnper se In other words,
C-FOREST is more akin to OR-parallelization than to RRT*
Indeed, C-FOREST is designed to be used with any randc
tree algorithm operating in any configuration space, such th
(1) the search-tree has almost sure convergence to the opti

Michael Otte is with the Laboratory for Information and Deais
Systems, Massachusetts Institute of Technology; Howdwemrmajority
of the this work was done when he was at the University of Galorat
Boulder. Nikolaus Correll is with the Department of ComputeieSce,
University of Colorado at Boulder. e-mail: ottemw@mit.edu. As more solutions are found (e.g., center CPU), sharing data ensures that all

1Single-queryplanners are used when the system is expected &PUs can always prune, sample and improve based on the best solution known
encounter a new configuration space each time it plans [1]ofrast to any CPU.
multi-queryplanners expect to perform multiple searches through the)))
same configuration space [2, 3, 4, 5, 6]). Fig. 1. Example of C-FOREST in 2_D Euclidean space. The plannin

2Shortest-path planningearches for thehortestvalid path with ©N €ach CPU is represented by a different color (Red, Blubiowg
respect to a metric [7, 8] (In contragteasible-path planningearches
for any valid path between start and goal [9]).

solution (i.e., in the limit as time approaches infinity), and (2CPU independently builds a random tree, and in [15] each

the configuration space obeys the triangle inequality. CPU uses a “quasi-best-first search algorithm with backtrack-
ing.” In either case, no data is exchanged between CPUs
A. Super Linear Speedup vs. stopping criterion during the search. In contrast, C-FOREST is designed to

. . . Ive the shortest-path planning problem an han
Letw; andwr be the wall time required to solveapartlcularSO ve the shortest-path planning problem and exchanges data

ol i or 7 GPUS, respecthehSpeodus radk 501" ST COTRG s s rosaly it ecause
tionally definedS = w; /wr, and measures the relative time

benefit of usingl’ CPUs in parallel. Parallelizatioefficiencyis C-FOREST solves the shortest-path planning problem. How-

defined as) = S/T and is inversely proportional to the amount o"" > 1is observed in both [10], wherg = 1.2, and [15],

.) wheren = 1.47. In contrast, we observe greater speedup (u
of electrical power required to solve a problem. N 9 P P (up

C-FOREST will normally be used with an ‘any-time’ Stop_to n > 9). We believe that [15] is the first to suggest that it

. L N . may be advantageous to “virtually” parallelize a super linear
ping criterion—it will search for better solutions as long as Y g y P P

possible, given constraints imposed by safety, time and/dlstrlbuted algorithm on a single CPU, similar to Sequential

ner n tc. H r, it can alternativel ngOREST'
Energy expenses, €tc. However, it can allernatively use a Cosly, Sampling-based roadmap of tre€SR7 feasible-path
based stopping criterion—running until the first solution bett

egglannin i i

. . g algorithm has also been implemented on a message
th%n a:jpfr_e(_jta_efln(? tardget CQSE“’;"E‘ IS f(l)urlldt. d wh passing architecture [16]. SRT can be viewed as PRM with

_ By definition, > andz cannot be caicuialed When an anyy q cqq representing trees instead of states. In the distributed
time §topp|ng C.I’IteI’IO.I"I IS used (for any algorithm)—since th€)/ersion, master CPUs pick the root node of each tree and
any-time stopping criterion manuall.y se&g and wr based check for tree combinations. Slave CPUs each grow a single
on external factors. Therefore, all discussions on speedup e{péf

- . . e that is rooted at different place in the configuration
efficiency in the current paper refer (o t@a,yc stopping Sé)ace.n = 1.12 is observed. In contrast, C-FOREST solves

criterion, which is also used in our experiments. The resulfg shortest-path planning problem, trees are rooted

obtained with thel.arg.. Stopping criterion transfer to the any- |, i ang grown on homogeneous CPUs with one phase of

time stopping criterion because they show how much more (8r eration (and > 9, but different problems are being solved).
less) planning time we expect would be required to get theD '

It usi differeffit Note that th ¢ el This paper extends upon our work émy-Com IS$8, 17].
same result using a aittere ote that the use of a particular, , [8] the multi-robot shortest-path problem is solved in a
stopping criterion does not change whether or not an algonth%

(.0.. C-FOREST) has almost sure convergence to the opti istributed manner by a six robot team. [17] extends the idea
9. 9 P dynamic teams. Trees are assumed to be a unique type

Z?gll;trlict)t?rr:nnt:\?elrlr;]tl;;:)tlme approachedinity (i.e., when the from [8] and the distributed architecture is a multi-robot team
. e . communicating over a wireless network. The current paper

The expenr_nents in Section 1V show that C-FOREST ca ssumes a general message passing architecture, generalizes
have super .Ilnear. spee(.jupﬂ & T, and n > 1) when the our earlier results to other algorithms (in particular RRT*) and
Lt‘”get, stopping crlterllon IS gsed—we even ObserYe an averagg, o problem domains (manipulator arms, alpha benchmark).
n>9In ©One scenario. This suggests that serially d|_/|<_j|ng Multiple trees have also been used for path planning with
c_omputatlon.betwee_ﬂi’ tfees onl CP.U may also be t_>enef|C|aI non-distributed architectureReconfigurable Random Forrest
(i.e., emulating a dlstrlbl_Jted architecture on a singe CPU()QRF) [18] is a replanning algorithm where old trees, dis-
Therefore, we al_so describe and evaluate the latter idea, Wh%hnected by obstacle movement, are saved and tested for
we call Sequential C-FOREST. connection vs. the current tree. Updated versions of this idea

are explored by [19] and [20] and callé@&zy Reconfiguration
Il. RELATED WORK Forestand Multipartite RRTs respectively. Major distinctions

The path planning problem naturally lends itself to parabetween these ideas and C-FOREST are that previous work:
lelization. Probabilistic Road-Map (PRM), a multi-query al-grows one tree at a time, assumes a serial architecture, and
gorithm, has been shown to be ‘embarrassingly’ parallel avlves the feasible-path planning problem.
memory shared architectures [11]. Each CPU randomly sam-Any-Time RRBolves the shortest-path planning problem by
ples and connects new points to the graph, and approximatelyilding new trees while time remains, such that each new tree
linear speedup is achieved. A similar idea to [11] is presentési guaranteed to be better than its predecessor [21]. A related
in [12], except that RRT and RRT* are parallelized insteaitiea for the feasible-path planning problem is to restart RRTs
of PRM andn = 1.13 is observed. RRT and RRT* have alsoif a solution has not been found before a timeout occurs [22].
been implemented on a GPU such that obstacle detectionBsth ideas assume a serial architecture and the next tree is
performed in parallel with sub-linear speedup [13]. [14] imnot started until after the previous tree has been destroyed.
plements the kinodynamiPlanning by Interior-Exterior Cell In contrast, C-FOREST builds all trees simultaneously (even
Exploration algorithm on a shared memory architecture witlsequential C-FOREST uses time division so that all tees
sub-linear speedup. In contrast to [11, 12, 13, 14], C-FORESKist simultaneously). Since multiple trees exist at one time,
assumes a message passing architecture in which CPUs doauaiperation between them contributes to planning progress.
necessarily have access to shared memory, and we obserf22] also contains a theoretical analysis applying restarting
greater efficiency—up tg > 9. theory from [23] to the feasible path planning problem, and

OR-parallelization over a message passing architecture sisows that one particularly extreme case of node pruning (e.g.,
used for feasible path-planning in [10, 15]. In [10] eaclpruning the entire tree) can be beneficial. The analysis is the

but this need not be the case). Let S andg € G. A path
P C t is composed of a sequence of nodes beginning at
and ending ay, such that it is both safe and possible for the
system to move from théth state to thei + 1)-th state. The
current best solutiorP,s; contains? = |Ps:| nodes labeled
Py, for 1 < i < ¢. We assume that the configuration space
is a metric space with distance metfic || (and so obeys the
triangle inequality).L = ||Pss:| is the length of the best path.
Let h(vi,v2) be an admissibfe heuristic function that
returns an estimate of the distance betwegnand vz. In
the case of multiple goal statel(vi,G) is assumed to
Fio 2 Boundarv bevond which new points cannot lead to bettbe admissible over the entire set of gbalMore accurate
so?utions (daZhed—{)Iue)).l The space withinpthe regiognand is defined ?estlmat.es retumeq k.’y('”“”) will mcreas? performance, bu?
by hs(v) + hy(v) = L (dashed-red), wherd is the length of the If NO Suitable heuristic can be found then it is possible to define
current best pattP,; (solid-red). h(vi,v2) = 0. Let hs(v) = h(s,v) andhy(v) = h(v, G). Let
t.ds(v) be the actual distance from the starutthrough treet.

The tree that discoveré®: IS tys: andL = tys:.ds(g) where
first attempt to quantify an advantage of using multiple trees ¢ t,s;. Assuming that at least one path to the goal has been
a path-planning algorithm. That said, the results of [22] do nédund, any point for which hs(v) + hy(v) > L cannot pos-
immediately generalize to the shortest-path planning problesibly lead to a bettePy,;. Geometricallyis(v) + hy(v) = L
This is because algorithms like RRT* rely on asymptoticallglescribes the boundary of an open set in the search space
dense node coverage (in the limit as time approaches infinitfBigure 2). LetA ;, be the Lebesgue measure of this open set.
to achieve almost sure convergence to the optimal soluti®r the case of a single goali(= {g}) in Euclidean space
(in the limit as time approaches infinity), and dense noda . is bounded by an ellipsoid.
coverage is impossible when restarting is used. In contrast,

C-FOREST leaves intact the particular nodes required f@. Algorithm

almqst sure convergence to the _optimal_ solution (in the limit The C-FOREST algorithm is displayed in Figure 3-Left-Top.
as time approaches infinity), while pruning only those nodelgbst is initialized to the empty set and its lengthdo (lines 1-
that cannot help convergence to the optimal solution. 2). Next,T trees are started, each on their own CPU (lines 3-4).
Each treet is an independent version of a random search tree
ll. C-FOREST (e.g., RRT*). The subroutin8topCriterion() returnstrue
In the C-FOREST algorithm each CPU buildsddferent once the stopping criterion has been met, otherwise it returns
search tree between tsamestart and goal states. Tree growthfalse. Once the allotted planning time has been exhausted, the
happens in two ways. First, normal random tree growth reliégest solution is returned (lines 5-7).
on probabilistically independent node samples until a path is Most computation happens RandomTree(t) (Figure 3-
found. Second, each time a better path is found, it is sent kdiddle-Top). t initializes t.Pys; to the empty set and.L to
every other tree via message passing so that its nodes cambe(lines 1-2). Search happens by picking a random point
engrafted. The latter exchange is beneficial in three ways: @)from the configuration space usinBandomPoint(L)
All trees expand into regions of the configuration space thahd then inserting it intot with t.Insert(v) (lines 4-5).
are known to be beneficial by at least one tree. (2) All tredBandomPoint(L) andInsert(v) are assumed to incorpo-
can prune themselves of globally outdated nodes (i.e., nodase any specific logic required by the underlying random tree
that will not lead to a better solution). (3) All trees can focuslgorithm and/or configuration space. If addingeads to a
their search by avoiding regions of the configuration space th@lobally) better path, then the neR,.: is sent to the other
cannot produce globally better solutions. (2) and (3) assuntrees (lines 7-8). If a better solution is found by another tree,
the existence of an admissible heuristic on path length, bilten it is added to the local tree usidgldPath(Pss:) (lines
can significantly reduce the time required to insert new nodd4-15). The local tree is pruned based on the global value of
because node insertion time is dependent on the numberusingt.Prune(L) (lines 9 and 14), and the sampling bounds

nodes already in a tree. are updated using.SetSampleBounds(L) (lines 10 and
15).
A. Definitions The subroutineAddPath(Py.;) is shown in Figure 3-Left-

Center. Line 1 iterates over nodesin,; from start to goal (the
start node does not need to be inserted, since it is guaranteed to
exist int). The subrouting.InTree(Pys: ;) checks ifPys;

A forestT is a collection ofl’ = |T| trees. Each treec T
is a graph consisting of nodes and edges. The prefixis
used to |nd|cate assoglatlon Wlt‘h a.partlcular tilzeEac.h node is already int to avoid duplicating points (line 2). Py...; does
v € t exists at a particular point in the configuration SPACE)t ayist int then it is inserted on line Insert (v, Poori_1)

that repr_esents a unique state of the _underlym_g system (eig"a modified version oflnsert(v) that explicitly includes
the location and orientation of a robot in an environment). Let

S and G represent the sets of all valid start and goal states,3p(v;, v2) will never overestimate the distance betwegnanduvs,.
respectively (in practice it is common to haj® = |G| =1, 4h(v1, G) < the distance fromy; to any and ally € G.

CFOREST() RandomTree(t) t.Insert(v)
1: L=oo 1: t.Insert(s) 1: p, = prospective parent af according to the random
2: Py =0 2:t.L =00 tree algorithm being used
3: for vVt € T do 3t Py =0 2:if t.ds(pv) + h(pv,v) + hg(v) < L then
4: RandomTree(t) 4: while StopCriterion() do 3: insertv according to the random tree algorithm
on its own CPU 5: v = RandomPoint (L)
5: while not StopCriterion() do 6: t.Insert(v) t.Insert(v, ppst)
6: sleep 70 if t.L < L then 1: p, = prospective parent af according to the random
7: Return (L, Pys) 8: Pyst = t.Ppst tree algorithm being used
9: L=tL 2: if t.ds(pv) + h(pv,v) < t.ds(ppst) + h(Post, v)
10: t.Prune(L) then
t.éddl:"ath(Pbst) 115 t.SetSampleBounds(L) 3 it t.de(po) + h(pw,v) + he(v) < L then
L:for i =210 |Py| do 12: elseif L <t.L then 4: insertv according to the random tree algorithm
2: if not t.InTree(Py; ;) then 13: t.AddPath(P;;) 5: else if t.ds(ppst) + h(Post,v) + hg(v) < L then
3 t.Insert(Pyss i, Post,i—1) 14 tL=1L 6 insertv according to the random tree algorithm
15: t.Prune(L) with py; as its parent
16: t.SetSampleBounds(L)
v = RandomPoint(L)
1: repeat t.Prune(L) SetSampleBounds(L)
2. v=(Rand(0,1)* (c— b)) +b 1 for ¥ nodesn €t do La=(L—]|s—gl)/2 .
3: until hs(v) + he(v) < L 2: if hs(n) + hg(n) > L then 2:b= max {min{s, g} — a, MinBounds()}
3 removen and its descendants 3: ¢ = min {max{s, g} + a, MaxBounds()}

Fig. 3. Algorithm for C-FOREST (Left-Top) and selected sultines. Note that any random tree algorithm can be used emplate for
RandomTree(t), as long as it provides the necessary subroutiMimBounds() andMaxBounds() return the minimum and maximum
coordinates of the configuration space along each dimension.

o . . . - . _Sequential CFOREST() RandomTree(t)
Pust,i—1 in the possible neighbor set, but is otherwise |dent|ca1$1: I — oo 1 if I < t.L then

This ensures thaPys:;—1 can be the parent dPy. i, but 5. Pyo; = 0 2: t.AddPath(P;.;)
allows better nodes to be used if they exist. 3: for vt € T do 3: t.L =1L

We can ignore points not il for random sampling 4 t-L =00 4. t.prune(l)
(RandomPoint(L), line 6, Figure 3). We can also prune 2 ., t-Fost = 0 5 t-SetSampleBounds(L)

- ! - - . 6: while not 6: while TreeTimeLeft()

nodes not inA; (as is done inPrune(L), line 2). StopCriterion() do and TimeLeft() do
Sampling directly from A, can be difficult in practice. 7: for Vt € T do 7 v = t.RandPoint(L)
Instead, we perform initial sampling from the hypercube8: RandTree(t) 8: t.Insert(v)
described byhs(v) + hy(v) < L per each dimension O Return (L, Pys) 1%, i t'£<L_t:i?
(SetSampleBounds(L), lines 1-3), and then disregard 11 e
points outsideA ;, (RandomPoint(L), lines 1-3). 12: Return

We have also found it useful to disregard any points fdfig. 4. Sequential C-FOREST (left), alRlandomTree(t) (right).
which t.ds(v) + hy(v) > L (Insert(v), line 2). That is Note that any random-tree algorithm can be used as a template fo
. y - ! ; .’ _RandomTree(t), as long as it provides the necessary subroutines.
pplnts that cannot lead to a better solution glvgn. thelr.curre broutines are described in Figure 3.
distance-to-root through the tree plus the heuristic estimate of
the distance to goal. This is a greedy strategy, since it does not
account for the fact that future tree-remodeling may decreage Sequential C-FOREST
t.ds(v), and is similar to the priority heap weight used in the
A* algorithm. We also prune the descendants of pruned nodes,

It is possible to run any distributed algorithm on a serial
in a similar greedy approactPgune(L), line 3). 'S Poss! . y S gor! !

architecture by using wirtual distributed architecture—where

time division on a single CPU simulates having multiple CPUs

[15]. The granularity of time division must be many orders

C. Runtime Analysis of magnitude smaller than the total running time because

each virtual CPU experiences a communication lag whenever

The runtime of C-FOREST is a combination of two thingsit is not running. A full-blown virtual distributed architec-

(1) the inherited runtime, per node, of the particular underlyinire contributes additional overhead (e.g., messaging between

random tree algorithm (e.g., for RRT®(clog(n)), where CPUs) and is unnecessary for our task. Instead, we propose

c is a predefined constant depending on dimensionality, aadsequential version of C-FOREST that is allotteti-th of

n is the number of nodes already in the tree), and (2) ththe computation time on a single CPU for each ttee T.

time associated with sending and receiving messages. Sendiig algorithm is presented in Figure 4. The amount of time

a message requires tim@(¢) and receiving it requires time allotted to each tree per iteration is small (e.g., on the order of

O +g(n)+ Zle f(2)), whereg(n) is the time required to 0.01 second), so that many loops through the forest occur over

prune nodes from the tree based [(B,.:||, and f(¢) is the the course of the search. The subroutifiseeTimeLeft()

time required to insert théth node of P, into the tree and returnstrue if there is still time for treet to plan during

is also function of the underlying random tree algorithm (fothe current planning iteration. The rest of the subroutines are

RRT* f(i) = clog(n + 1)). identical to those described in Figure 3 in Section Il

Arm Experiment, Parallel Architecture,
1 to 64 CPUs, 1 tree per CPU

C — FOREST OR — Parallel
Liarge
@100 100 " . ‘ 9132)
) & s . a— 140
& 10 b 10 ® 4 150
—— 170
° A —— 200
1 A
1 8 16 32 64 1 8 16 32 64
150 y 150 Liarget
A 125 125 —o— 130
Fig. 5. 7 DOF arm with end-effector path (Left). The Alph&1. = 100 A 100 A 140
feasible path-planning benchmark problem (Right). ¢ 75 . 75 = 150
&' 50 —=1 50 s = 170
25 =" 25 oo 5 200
= o= L |----8=T
0 0
35 Ltu,'rgﬁt
3
% —o— 130
5 25 A 140
3 2 o 150
> g 15 —— 170
SR —=— 200
0.5 | ----n=1
O1 8 16 32 64 1 8 16 32 64
£) T = CPUs T = CPUs
Arm Experiment, Serial Architecture, 1 to 64 trees on 1 CPU
Fig. 6. Toy and Office environments used in experiment groups C — FOREST OR — Parallel
2 and 3 with sample paths. Goal regions appear rectangular ancizgA jgg:r:—r"‘\; Liarget
robot starting locations are circular. o s\ SN N ‘ —— 130
B — R
10 . , 10 —— 170
The algorithm moves to the next tree as soon as the previous ° 5 —— 200
tree has found a solution, even if time remains for the previous 27 516 32 64 21 8 16 32 64
tree RandTree(t), line 12). We have found this to help E‘ . .
during the early phases of search because the next tree ¢anv . i Ltawlgg
focus on improving the current best solution. This can quickl% f; A 140
reduce the search envelope at the beginning of the search, with 4 =— 150
positive effects that propagate forward with time. 5 : g%b o
Speedupequals efficiency for Sequential C-FOREST be- § é - =1 |----n=1

cause only one CPU is used. Thus, while parallel C-FORE
can be useful when < 1, sequential C-FOREST shouthly
be used whem > 1. Fig. 7. 7 DOF arm. Color is target path length:rge¢). Dashed
lines show linear speedup & 1 and S = T') with respect to CPUs.
V. E Left and Right: C-FOREST and OR, respectively. Top threesrow
- EXPERIMENTS time (mean, standard error), speedup, and efficiency for thallgla
architecture using 1-64 CPUs, 1 tree per CPU (32 runs per data

W ¢ fi ts of . ts i ving f diff Eoint). Bottom two rows: time (mean, standard error), and dpge
€ periorm nive SEts of experiments Involving tour dirrerent efficiency for the serial architecture with 1-64 trees onngle CPU

planning problems. The first four experiments include: a sevegs runs per data-point§ = E because 1 CPU is used.
degree-of-freedom manipulator arm, a multi-robot team in two
different environments (office and toy, respectively), and the
classic alpha-1.5 feasible-path planning benchmark prob|efﬁ1’ 1ms at a timeNote that on the serial architecture efficiency
[24]. The problems are illustrated in Figures 5 and 6. In the fiftRquals speedup—because 1 CPU is used and efficiency is
experiment we evaluate the relative benefits of path sharif§fined as speedup divided by the number CPUs. For brevity,
vs. path-length based pruning and sampling envelope reductig depict efficiency and speedup on the same plot for the serial
in the multi-robot team office problem. We use RRT* as thalgorithms.
underlying random tree in all experiments.

Our parallel architecture contaiid single CPU computers A- C-FOREST vs. OR algorithms
that communicate over a network, each CPU has a 1.2 GHzIn the first four experiments we evaluate the performance of
Xeon processor. Our serial architecture is a standard deskFOREST vs. OR-parallelization using a distributed architec-
top computer with 1 CPU and a 1.596 GHz processor, dllire, and the performance of C-FOREST vs. OR-serialization
computers run the Ubuntu operating system. On the parallding a sequential architecture. OR-parallelization grdws
architecture each C-FOREST or OR-parallelization tree is rurees in parallel thato not communicatéuring search. OR-
on its own computer. On the serial architecture each tree plaserialization is a 1-CPU version of OR-parallelization where

1816 32 64
T

4 Robot Team Office Experiment, Parallel Architecture, 4 Robot Team Block Experiment, Parallel Architecture,
1 to 64 CPUs, 1 tree per CPU 1 to 64 CPUs, 1 tree per CPU
C — FOREST OR — Parallel C — FOREST OR — Parallel
Liarget 100, 100&,\2\‘_\-‘ Liarget
° =—o— 30.0 ° 100 & 104 8 . ve —— 445
g & 325 g o e ° + * & 450
= =1 o o R 1
) °— 35.0 = = 46.0
—— 400 01 ¥ 01 y | —— 480
—— 50.0 —— 52,0
0.01 0.01
1 8 16 32 64 1 8 16 32 64
125 125
Ltarget Lta'r'get
o —o— 300 o 100 / 100 —o— 445
i
—é’ A 325 —é’ 75 p 75 > A 450
3 a— 350 8 N e oo o— 46.0
&= —— 400 & %0 .7 50 s —— 480
P - A
¥ 25 /- —— 52.0
o A
- b—1 |----5=T
4 01 8 16 32 64
25
Ltu.'r'get
3) 2 —o— 445
5 15 4 45.0
2 o 46.0
EE 1 —o— 48.0
H 05 —— 520
] =1
1 8 16 32 64 1 8 16 32 64 1 816 32 64 O1 8 16 32 64
T = CPUs T = CPUs T = CPUs T = CPUs
4 Robot Team Office Experiment Experiment, Serial Architestur 4 Robot Team Block Experiment Experiment, Serial Architestur
1 to 64 trees on 1 CPU 1 to 64 trees on 1 CPU
C — FOREST OR — Parallel C — FOREST OR — Parallel
200 200
Ltarget Ltar‘get
o 100 100 o 30.0 —— 445
g 50 50 & 32.5 @ 45.0
= 35.0 46.0
20 20 —o— 400 —— 480
10 : 10 —— 50.0 —— 52,0
1 816 32 64
> >
2 2
2 Ltarge.t 9 8 Ltarget
3} —o— 300 S —e— 445
E A 325 E 6 A 450
I 35.0 I 4 46.0
Q —o— 40.0 [—4— 48.0
% —— 50.0 % 2 —»— 52.0
] 4 | _.p=1] »____Em -
(% 1 816 32 64 1 816 32 64 (% 1 8 16 32 64 01 8 16 32 64
T T T T

Fig. 8. 4 robot team in an office environment. Color is targeFig. 9. 4 robot team in block environment. Color is target gatigth
path length L¢arget). Dashed lines show linear speedup= 1 and (L¢qrget). Dashed lines show linear speedup=£ 1 andS = T') with

S = T) with respect to CPUs. Left and Right: C-FOREST and ORrespect to CPUs. Left and Right: C-FOREST and OR, respégtive
respectively. Top three rows: time (mean, standard erroeedipp, and Top three rows: time (mean, standard error), speedup, andertfic
efficiency for the parallel architecture using 1-64 CPUsgek fper CPU for the parallel architecture using 1-64 CPUs, 1 tree per C3JXuns
(32 runs per data-point). Bottom two rows: time (mean, stathdaior), per data-point). Bottom two rows: time (mean, standard erramy
and speedup = efficiency for the serial architecture witm1r6es on speedup = efficiency for the serial architecture with 1-@&ks$ron a
a single CPU (50 runs per data-poin$)= E because 1 CPU is used. single CPU (50 runs per data-poin§,= E because 1 CPU is used.

computation is serially divided between non-communicatingasy path-lengths are solved as soon as the first valid path is
trees. Comparison of the C-FOREST algorithms to the Ofund, and relatively hard path-lengths are solved in three to
algorithms is useful because it demonstrates the added adviive minutes, on average, depending on experiment.
tage of sharing datduring planningvs. the purely statistical The number of repeated trials represented by each data point
benefits of drawing multiple random samples from the set ofaries by experiment. 32 repeated trials are performed per data
all paths, respectively. point for all tests involving C-FOREST and OR-parallelization.
For each combination of planning problem, architecturdsor test involving sequential C-FOREST and OR-serialization,
and{C-FOREST, OR-parallelizatigrwe perform repeated tri- 35, 50, 50, and 20 trials are performed per data point in the arm,
als forT = {1, 2, 4, 8, 16, 32, 64} and vs. differentLq-q: team office, team toy, and alpha-1.5 problems, respectively.
(e.g., path length quality targets). The valuesIqf.,.: are This results in a total 018, 354 individual trials.
chosen to provide points along a spectrum of varying degreesFigures 7, 8, 9, and 10 display experimental results for the
of difficulty. The bounds of this spectrum are defined by theeven degree-of-freedom manipulator arm, multi-robot team
performance of a single tree, such that problems with relatively the office environment, multi-robot team in a simple toy

Alpha 1.5 Experiment, Parallel Architecture,

1'to 64 CPUs, 1 tree per CPU effector of the arm. This is useful when we want to minimize

C — FOREST OR. — Parallel the distance traveled by whatever the arm is holding.
o o In the second experiment the centralized multi-robot plan-
L 1500 150 Liarget ning frameworR is used for a team of four robots moving in an
E 100 100[, o~ 150 office environment. Distance is defined as euclidean distance
& o1 o through the combined configuration space of all robots.
50\\\‘\ 50&-.\."%7 The third experiment is similar to the second, except that
B> o BT e m o the 4-robot team must exc_hange_ places around a block shaped
350 357 obstacle (Figure 6-left). It is designed to evaluate C-FOREST
= 22. 22:' o Liarget vs. OR in an easy environment and test our analytical result
1: sfeo—o o 2 o 10 that C-FOREST is less likely to have super-linear speedup in
2 15-:2/:/4—— 15?:/‘—“—* such a case.
O; O; The fourth experiment is the Alpha-1.5 benchmark problem
R T S ok . [24]. It consists of two metal “wires” that are twisted around
14 each other. The problem is solved when the wires are separated.
. 12 Learger The Alpha family of problems is a classic feasible-path plan-
§ O_; °— 150 ning scenario. Although C-FOREST is designed as a shortest-
< o6 s path planning algorithm, this experiment tests how well it fares
& —— 210 : -
M 04 ceep=1 in the feasible-path planning domain—where simply finding
o . s a viable solution is quite challenging. We use the Alpha-
v Tepus O M b 1.5 benchmark (vs. Alpha-1.0) bet_:ause harder versions of the
Alpha 1.5 Experiment, Serial Architecture, 1 to 64 trees onPLIC probl_em Cogld_not be solved by ?lther C-FOREST or the OR
C — FOREST OR. — Parallel algorithm within an amount of time that was conducive to
1000 1000 running repeated trials (in fact, we failed to find a solution on
. 500 Ltarget Alpha-1.0 after running for more than an hour). We calculate
£ 2008 200 e— 150 distance using the method presented in [25]—i.e., as a weighted
& 100(100 | sum of (A) the magnitude of translation, and (B) a function of
50 50 the inner-product between quaternions (Algorithm 5 in, [25]).
T PR rErETa— o4 We choose these weights such that that a 180 degree pure
oy) . rotation has the same distance as the longest dimension of the
£ 1 (bent) wire.
15 15 Ltarget
€ o— 150
e Ipmmmmmmmmmmmmmees . ZS B. C-FOREST solution sharing vs. pruning
o -
—qéj 05 05&‘&.“ ----n=1 C-FOREST differs from OR-parallelization in two ways:
S o o first, it shares paths between trees during planning; and second,
n 1 8 16 32 64 1 8 16 32 64 .
T T it prunes old nodes and samples new ones based on the lengths

Fig. 10. Alpha-1.5 experiment. Color is target path lengthu¢ge:). of those shared paths. In order to assess the relative effects
Dashed lines show linear speedup=¢ 1 andS = T') with respect to of these two differences, we rerun the office environment
CPUs. Left and Right: 3—FS)REST and C()jR, feSP(;fCti;f/?l}’- Tmﬁghr experiment forL ;.4 = 30 meters with modified versions of
g;";’:l'letl'gfcéit”:i?&eSaas?n;rl_ejrgg;uss‘?ele tr“e% r?:r cepbm???é:ytmr the algorithm that: (1) do not prune or decrease the sampling
data-point). Bottom two rows: time (mean, standard erro),spreedup €Nvelope based b, or (2) do not share and engraft the current
= efficiency for the serial architecture with 1-64 trees oringle CPU best solution (lengtiL is still shared and used for pruning and
(20 runs per data-pointfy = E because 1 CPU is used. sampling envelope reduction). Figure 11 depicts the planning
times and efficiencies for the parallel and sequential versions

of C-FOREST (top and bottom sub-figures, respectively).

environment, and the alpha-1.5 problem, respectively. The

organization of each figure is identical as follows: Left and V. DISCUSSION OF RESULTS

right columns show results for C-FOREST algorithms and OR. C-FOREST vs. OR for shortest-path planning

algo_rithms, respectively. The top three rows show tota_LI time, On shortest-path planning problems (i.e., the first three ex-
efficiency, and speedup for C_‘FOREST VS. OR'par_a!Iel'zat'oBeriments) parallel C-FOREST outperforms OR-parallelization
The bottom two show total time and speedup (efficiency) faf,y sequential C-FOREST outperforms OR-serialization, in
sequential C-FOREST vs. OR-serialization. general. The few exceptions to this trend occur for target-

WhenT' = 1, the resulting algorithm is equivalent to thejengths that allow relatively little time to improve upon an
underlying random-tree algorithm (e.g., RRT*).

The Arm and Office Team experiments are representative’n éhe ‘?e(?”_""d”zﬁd _m“'“‘“;bm_p'al‘”r;ing fra”;)e"t"o{‘; e";‘_“ rOtt’F'Ea
of standard robotic path planning problems. In the first, a T2 55 B2 Aol of all individual robots fgmation
DOF manipulator arm (Figure 5) must plan around an obstaclgyaces. If the team consists of four holonomic 2D robots, then
Distance is defined as the total distance traveled by the er@nfiguration space has a total of eight degrees-of-freedom.

C-FOREST, Team Office Experiment B. Shortest-path planning vs. feasible-path planning

Parallel Architecture, Serial Architecture,) .
1to 64 CPUs, 1 tree per CPU 1to 64 treeson 1 CPU C-FOREST has super linear speedup on all of the planning
A version 500 problems that come form the shortest-path planning domain
, o baseline . 2008 (sometimes above 350), many efficiencies greater than 2, and
£ : 4 no sample adjust] £ 1005_\\'\/ some greater than 9; and Sequential C-FOREST algorithm has
B0y —ropathshare | & sof | speedups as high as 20. In contrast, the speedups of C-FOREST
» 200 | * and Sequential C-FOREST (and also the OR algorithms) are
1 3 o 3
I RTINET o R o pearly aIV_/ays sgb-linear on th(_a Alpha-1.5 ben_chmark, which
400 g; is a classic feasible path planning problem. This suggests that
bverl_sion £ speedup is more likely to occur on problems for which an
4 ° aseline N e el
g 00 N ' = initial solution is relatively easy to find, compared to one with
5 no sample adjust| m y y p
2 200 e —=—no path share I length L¢.-4e¢—fOr instance, when most of the planning time
9 g p g
o wl - S=T E is spent improving a sub-optimal solution vs. simply finding
{ == § an initial solution. It also suggests that C-FOREST is no better
816 a2 64) than OR-parallelization fofeasiblepath-planning.
p patn-p g
. . b‘;j;fnl:“ C. Exchanging paths vs. path lengths
£ 4—no sample adjust Although sending an entire path requires more time and
& T nopath share space than sending only its length, our results suggest that
A doing so is worth the price. This is indicated by experiment
0 five (see Figure 11), where forests that do not share nodes
e M pus exhibit relatively low efficiencies (slightly abovB). That said,
Fig. 11. C-FOREST variants on the office problem for€ducing the sampling envelope does have a noticeable effect

Ltarget = 30m. “Baseline” (yellow) is C-FOREST or sequential C-in all experiments.
FOREST (left or right, respectively), “no sample adjust’afjeis a
variant that does not decrease the sampling envelope, “tospate” D. 7 and Efficiency
(blue) is a variant that does not engraft solutions (sofutemgths are) . .
still shared). Left: time (mean, standard error), speedug ediiciency Forests (" > 1) find the target SO'““Q” more qu.lckly, on
for the parallel architecture using 1-64 CPUs, 1 tree per (¥Juns average, than a stand alone trge=¢ 1) in all experiments.
per data-point). Right: time and speedup = efficiency for teeas However, in our experiments the best efficiencies for C-
architecture with 1-64 trees on a single CPU (35 runs perplai). FOREST are observed wheh < 64 (i.e., not with the most
S = E for the serial architecture because 1 CPU is used. . . ' .
trees). Thus, with respect to efficiency, there may be an inherent
limit to the cost-savings C-FOREST can provide. The observed
power savings of up t®9% (for n ~ 9.4) is quite decent.
initial solution. C-FOREST algorithms have increasingly bettepequential C-FOREST attained an even better power savings
speedup vs. the OR algorithms dg.,4.: decreases—i.e., 0f 95% (for n ~ 23.6). In fact, C-FOREST witil" > 1 yields a
when the time used to improve a sub-optimal solution repréetter efficiency thafl” = 1 in nearly all shortest-path planning
sents a larger percentage of total planning time. This reflects @periments. _ _ _
fact that C-FOREST trees only work together after the initial An explicit method of selecting’ to achieve the maximum
solution is found (before the initial solution is found, there igfficiency is beyond the scope of the current paper. However,

no difference between C-FOREST and OR-parallelization). our results suggest that performance is stabldw&.g., using

. - . an algorithm with30% more or less trees has a relatively small
Although the OR algorithm xhibit r-linear - . . o
ough the OR algo s do exhibit super-linea Spewu&‘fect on solution quality vs. time), and that it is better to

in many cases, the speedup of the C-FOREST algorithms s - :
. efror on the side of using too many trees than not enough.
greater—by up to an order of magnitude.

We believe that calibratin@ on a similar problem will give a
Intuitively, exchanging paths is beneficial because bottleecent approximation to its optimal value, since there appears

necks and other obstructions can make exploring the spagehbe ample room for error.

difficult, and finding a close-to-optimal solution unlikely. If

the optimal path passes through multiple bottlenecks andf@ér Causes for C-Forest’s super linear performance

snakes around mu_ItipIe obstaclest other sub-optimal routes c_FOREST exhibits super-linear speedup because it allows
to the goal also exist; then only onec T must get lucky per myjtiple trees to actively cooperate during the search for better
bottleneck/obstacle, instead of requiring a partictleo get ang petter solutions. In particular, sharing the nodes of the
lucky per all bottlenecks/obstacles—the latter is less likely. orrent best path appears to be the most helpful aspect of
Coupled sampling is beneficial because it allows all tredbe algorithni (as suggested by experiment five). The latter is
to focus effort on exploring only regions of the configuratioradvantageous because it biases all trees to be populated with
that can possibly lead to better solutions. Coupled pruning i®des from “useful” locations in the search space, and allows
beneficial because it reduces the amount of work required @ach tree’s visibility envelope to expand into nearby regions.

insert new nodes into each tree. .)) -
6Coupled sampling and pruning operations, and the stafisiita

vantages of building multiple random trees in parallel ase delpful.

VI. CONCLUSIONS [11]

C-FOREST allows multiple trees to actively cooperate dur-
ing the search for better and better solutions. Experimental

results suggest C-FOREST will perform better when: (1) 2

initial solution can be found in a fraction of the total planning
time, (2) finding a relatively good solution is difficult. Further,
most of C-FOREST’s performance gains appear to come from

sharing the nodes of the current best-path.

[13]

Both C-FOREST and OR-parallelization achieve super-
linear speedup on the shortest-path planning problem; however,
the speedup observed with C-FOREST is up to an order
of magnitude greater. To the best of our knowledge, trﬁ4]
best average efficiency observed with C-FOREGT(9.4)
is significantly greater than any previous result observed in
distributed single-query planning. Speedup val$es> 300
are also observed; as well as speedup (and efficiency) of

S =n > 23.6 for Sequential C-FOREST.

(1]

(2]

(3]

(4]

[15]

REFERENCES

I. A. Sucan and L. E. Kavraki, “On the implementation of[16]
single-query sampling-based motion planners,BEE
International Conference on Robotics and Automation
2010, pp. 2005-2011.

M. Overmars and P. Svestka, “A probabilistic learning apf17]
proach to motion planning,” ilgorithmic Foundations

of Robotics (WAFR)1995, pp. 19-37.

Y. Koga and J.-C. Latombe, “On multi-arm manipulation
planning,” in Proc. IEEE International Conference on[18]
Robotics and Automatigmvol. 2, 1994, pp. 945-952.

G. Sanchez and J.-C. Latombe, “On delaying collision
checking in prm planning: Application to multi-robot
coordination,”The international Journal of Robotics Re-[19]
search vol. 21, pp. 5-26, 2002.

[5] —, “Using a prm planner to compare centralized and

6]

(7]

(8]

&l

[10]

decoupled planning for multi robot systems,” Rroc.

IEEE International Conference on Robotics and Automg20]
tion, vol. 2, 2002, pp. 2112-2119.

C. M. Clark, S. M. Rock, and J.-C. Latombe, “Dynamic
networks for motion planning in multi-robot space sys-
tems,” in International Symposium on Artificial Intel- [21]
ligence, Robotics and Automation in Spa@903, pp.
3621-3631.

S. Karaman and E. Frazzoli, “Incremental sampling-basgd?]
algorithms for optimal motion planning,” iRroceedings

of Robotics: Science and Systerg810.

M. Otte and N. Correll, "Any-com multi-robot path- [23]
planning: Maximizing collaboration for variable band-
width,” in Proc. International Symposium on Distributed
Autonomous Robotics Syster@810.

S. M. Lavalle and J. J. Kuffner, “Rapidly-exploring [24]
random trees: Progress and prospectsilgorithmic and
Computational Robotics: New Direction2001, pp. 293—

308.

S. Caselli and M. Reggiani, “Randomized motion planf25]
ning on parallel and distributed architectures,’Baromi-

cro Workshop on Parallel and Distributed Processing
1999, pp. 297-304.

N. M. Amato and L. K. Dale, “Probabilistic roadmap
methods are embarrassingly parallel,” Rroc. IEEE
International Conference on Robotics and Automation
1999, pp. 688-694.

] J. Ichnowski and R. Alterovitz, “Parallel sampling-based

motion planning with superlinear speedup,” lim Proc.
IEEE/RSJ International Conference on Intelligent Robots
and System<2012.

Bialkowski, Karaman, and Frazzoli, “Massively paral-
lelizing the RRT and the RRT*,” irProceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems2011.

I. A. Sucan and L. E. Kavraki, “Kinodynamic motion
planning by interior-exterior cell exploration,” irl-
gorithmic Foundation of Robotics VIII (Proceedings of
Workshop on the Algorithmic Foundations of Robotics),
STAR 2009, pp. 449-464.

D. J. Challou, M. Gini, and V. Kumar, “Parallel search
algorithms for robot motion planning,” ItEEE Interna-
tional Conference on Robotics and Automati®@93, pp.
46-51.

E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and
L. E. Kavraki, “Sampling-based roadmap of trees for par-
allel motion planning,”IEEE Transactions on Robotics
vol. 21, pp. 587-608, 2005.

M. Otte and N. Correll, “Any-com multi-robot path-
planning with dynamic teams: Multi-robot coordination
under communication constraints,” Rroc. International
Symposium on Experimental Roboti2810.

T.-Y. Li and Y.-C. Shie, “An incremental learning ap-
proach to motion planning with roadmap management,”
in IEEE International Conference on Robotics and Au-
tomation 2002, pp. 3411-3416.

R. Gayle, K. R. Klingler, and P. G. Xavier, “Lazy recon-
figuration forest (LRF) - an approach for motion planning
with multiple tasks in dynamic environments.” 2007, pp.
1316-1323.

M. Zucker, J. J. Kuffner, and M. S. Branicky, “Multipar-
tite RRTs for rapid replanning in dynamic environments,”
in International Conference on Robotics and Automation
2007, pp. 1603-1609.

D. Ferguson and A. Stentz, “Anytime RRTS,” Proc.
IEEE/RSJ International Conference on Intelligent Robots
and System<2006, pp. 5369-5375.

N. A. Wedge and M. S. Branicky, “On heavy-tailed
runtimes and restarts in rapidly-exploring random trees,”
in AAAI Conference on Atrtificial Intelligenc@008.

M. Luby, A. Sinclair, and D. Zuckerman, “Speedup of
las vegas algorithms,” inn Proc. of the 2nd Israel
Symposium on the Theory of Computing and Systems
1993, pp. 128-133.

B. Yamrom, “Alpha puzzle,” Provided by GE
Corporate Research & Development Center,
via Parasol Lab at Texas A & M University,

http://parasol.tamu.edu/dsmft/benchmarks/mp/.

J. J. Kuffner, “Effective sampling and distance metrics for
3d rigid body path planning,” ifProc. IEEE Conference
on Robotics and Automatip2004.

