The Any-Com Approach to Multi-Robot Coordination

Michael W. Otte and Nikolaus Correll

Abstract— We propose a new class of algorithms for multi-
robot problems called “Any-Com”. With Any-Com, a subop-
timal solution is found quickly and refined as communication
permits (analogous to “Any-Time” where a suboptimal solution
is refined as time permits). Any-Com can be used to mitigate
the high cost of solving multi-robot problems by dividing
effort among all robots the solution will benefit. This is useful
when complete algorithms are desirable. Previous algorithms
make assumptions about communication that are often invalid
in the real world. Any-Com enables collaborative problem
solving as communication permits, with graceful performance
declines otherwise. This paper provides a “recipe” for Any-Com
algorithms and shows results from a multi-robot path-planning
and a multi-robot task allocation problem that exemplify the
approach.

I. INTRODUCTION

Complete solutions to multi-robot problems can be compu-
tationally complex —e.g. complete multi-robot path planning,
coverage, and task allocation problems have greater than
polynomial runtime with respect to the number of robots.
Although less expensive methods can enable practical per-
formance in many real-world situations, these are incomplete
and often not desirable when computational and communica-
tion resources that would enable more competitive solutions
are available.

Often, each robot in a team is equipped with its own
computer and the ability to communicate. Given these re-
sources, it makes sense to divide the effort of computing a
solution among all robots the solution will benefit. That is,
a networked team of robots can be re-cast as a distributed
computer to solve problems encountered by its composite
robots. This is particularly useful for complex problems—
e.g. complete solutions multi-robot coordination problems.
In previous work, such solutions have either been calculated
on a single robot and then disseminated, or solved by each
robot individually.

Wireless quality of service changes drastically over time
and space. Bandwidth is environment dependent and often
beyond the control of the user or a system. Yet, algorithms
for coordinating networked robot systems (not to mention
distributed systems, in general) usually rely on a minimum
quality of service and fail otherwise. We would like robot
teams to operate in realistic environments, and are interested
in distributed algorithms that utilize available communica-
tion, but have gracefully performance declines otherwise. We
coin the term “Any-Com” to describe this type of algorithm.

Michael W. Otte and Nikolaus Correll are with the Department of
Computer Science, University of Colorado at Boulder, 430 UCB, Boulder,
Colorado 80309-0430 michael.ottel@colorado.edu

An Any-Com algorithm’s bandwidth utilization is analogous
to an “Any-Time” algorithm’s utilization of time [1].

We believe the Any-Com idea is applicable to a wide range
of problems and two case-studies are presented in sections
IV and V, respectively. The general theory is discussed in
III, and we begin with a limited discussion of related work
in section II.

II. RELATED WORK

Here we briefly discuss a few multi-robot algorithms that
are located at either end of the communication, computation,
and completeness spectrums. Any-Com algorithms fill this
gap as they will max out available resources whenever
possible.

A. Incomplete methods

Often it is advantageous to have each agent maintain
its own world-view, goals, and navigation function, while
remaining ignorant of other robots and their intentions. In the
navigation domain, such algorithms are called the cocktail
party model [2], [3], and can generally be described as
greedy algorithms. Each agent alternates sensing, planning,
and movement, and there is no direct coordination between
robots. Such algorithms are incomplete, but are popular
due to simplicity, scalability, and minimal communication
requirements.

B. Complete methods: Centralized planning

In Centralized planning all robots are considered to be
individual pieces of a larger composite robot. Solutions
are calculated in the resulting high dimensional composite
configuration space (e.g. [4]-[9] for the multi-robot path-
planning domain). Similarly, in [10] a market-based algo-
rithm is used to allocate tasks in a multi-robot coverage
problem. Although this algorithm is robust to communication
failure — leading to all robots performing all tasks — it is
not Any-Com as communication is not used to distribute
computation. Indeed although being the most closely related
works to our own, in all of the above algorithms each agent
must calculate an entire solution on its own (or calculated
on a single robot and then distributed to the others). In con-
trast, Any-Com algorithms should leverage the distributed-
computing power of the robotic team to help find better
solutions more quickly.

III. THE ANYCOM APPROACH

Any-Com algorithms assume robots have the ability to
send and receive messages. However, they must function in
realistic communication environments, so only non-critical

parts of an algorithm should be parallelized. This allows
successful communications to help better solutions to be
found more quickly, while unsuccessful communications do
not hinder the eventual discovery of a solution. For example,
if the algorithm involves searching a state space, the problem
can be divided such that each robot is likely to search a
unique part of that space. This works best if the problem
being solved is likely to have many solutions—possibly of
varying quality, instead of just one.

If the solution is used for real-world coordination, we
must assume a small finite number O(n) of communications
are successful, where n is the number of robots. This is
required to guarantee all robots execute the same solution.
We note that total communication failure (< O(n) successful
messages) cannot be addressed by any complete multi-robot
algorithm. The only option in these cases is to fall back
on incomplete methods. Although we do not address total
communication failure, Any-Com algorithms can be robust to
significant communication deterioration (e.g. > 95% chance
a packet is dropped).

Because the entire team collaborates in real-time, an
attempt should be made to keep each member up-to-date with
respect to the rest of the team. For instance, many algorithms
can benefit from sharing intermediate data. Specifically, if the
team is building a search tree, e.g. for multi-robot navigation,
the tree can be pruned based on the length of the best solution
currently known. Thus, sharing information about the current
best allows the entire team to focus energy on finding better
solutions. In practice we use a simple UDP based protocol
so that new up-to-date messages are always sent and dropped
messages are ignored.

Data from one robot may be useful to any/every other
robot, and information is propagated throughout the team.
This does not mean a particular message reaches every other
robot, but rather, each robot updates its internal view of the
current problem, and then broadcasts what it believes to be
the critical information. Over time, useless information is
ignored while important information is rebroadcast until it is
outdated and replaced.

IV. MULTI-ROBOT PATH PLANNING

The multi-robot navigation problem is to find a coordi-
nated set of collision-free paths for all robots moving within
a common area. We discuss three algorithms: an Any-Com
idea Partial Solution Sharing, a simple distributed framework
Solution Sharing and a standard client-server framework used
for comparison Baseline. All algorithms use an Any-Time
rapidly-expanding random tree (RRT) [1], and all robots are
allowed to plan for some minimum time p before moving.

A. Methodology

In Solution Sharing, all robots search separately for a
solution to the multi-robot path-planning problem. After
1, the best over-all solution is dispersed. Partial Solution
Sharing extends this idea by sharing intermediate Any-Time
solutions as they become available. Messaging begins once
the first (sub-optimal) solution is known to the sending robot.

In Baseline, a single server robot plans for time p and then
sends the solution to the other robots.

The same RRT is used as the base algorithm for Solution
Sharing, Partial Solution Sharing, and Baseline. The algo-
rithm works by randomly picking a point p; in the current
search-tree and attempting to connect it to a new random
point po in the configuration space, subject to the constraints
imposed by the robots’ dynamics. With probability p the
coordinates of py due to a particular robot are chosen along
the straight-line path to that robot’s goal, otherwise they are
chosen at random.

Once the first intermediate solution is found, we prune
the tree by removing sub-paths that cannot possibly lead to
better solutions. Aggressive pruning focuses the search and
helps new (i.e. better) intermediate solutions to be found
more quickly.

Search continues until time 1, when the most recent (and
therefore best) intermediate solution is recorded as an agent’s
final solution. The solutions of all robots are distributed and
the best is used. In Baseline, the server is the only robot with
a solution to distribute.

In Partial Solution Sharing, agents share intermediate
solutions with each other. This allows the entire team to have
tighter search-tree pruning, and further focus search toward
new and improved solutions. Additionally, it gives each agent
the opportunity to improve the best solution found so far.
Intermediate solution sharing is robust to communication
failures because dropped messages do not affect an agent’s
ability to eventually find a solution. On the other hand,
successful communications focuses the search in beneficial
ways and help the team find better over-all solutions more
quickly. Even out-of-date messages have the potential to be
beneficial, as long as the solution they contain is better than
the receiving agent’s current best.

Because the search-tree is generated randomly, each solu-
tion is drawn from a distribution over all possible solutions.
Solution Sharing increases the team’s collective chances of
finding a desirable solution, vs. Baseline, because N random
samples are drawn from this distribution instead of just one.

B. Experiments and Results

We perform two experiments. The first is conducted in
a simulated environment and the second on a team of 6
real robots. Simulation is used for Experiment 1 in order
to evaluate theoretical performance over a wide range of
parameters. Real robots are used for experiment 2 to validate
that the algorithms function in practice.

C. Experiment 1

Experiment 1 consists of six simulated robots operating
in an obstacle free environment. The robots start equally
spaced around a circle facing inward (Figure 1, Left). The
goal is to have all robots end up on the opposite side, also
facing inward (Figure 1, Right). This causes a high degree
of congestion in the center of the environment. We evaluate
the performance of all three algorithms vs. message success
probability 7, vs. planning time . In order to facilitate

@ ©

Fig. 1: Experiment 1, Circles with large arrows represent
robots, ‘x’s with small arrows represent goals. Starting
configuration (Left), and a resulting solution (Right).

Planning Time: 2.5 sec

——Baseline

oution Sharing
—5— Partial Solution Sharing|

IS
b

1] 1

02 04 06 08 02 04 06 08
Probability of successful message send Probability of successful message send

Fig. 2: Average Solution Lengths from Experiment 1.

—e—Baseline
—s— Soution Sharin
—=— Partial Solution Sharingl

0 5 20

10 15
Planning Time (sec)

Fig. 3: Average Solution Lengths from Experiment 2.

statistical analysis of results, we perform 20 runs per each
combination of parameters. Mean and standard deviations of
the resulting solutions are displayed in Figure 2.

D. Experiment 2

Experiment 2 is conducted on 6 actual robots and is similar
to Experiment 1. During planning we set w to be 4. We
perform tests using the same planning times p as in the
previous experiment, and perform 10 runs per experiment
per point. We plot solution quality in Figure 3.

E. Results

Partial Solution Sharing outperforms the other two al-
gorithms and Solution Sharing out-perform Baseline. Us-
ing a two-sample Kolmogorov-Smirnov test, we compare
algorithms based on solution lengths, and find statistically
significant (p < .05) differences between any two algorithms
for the vast majority of method-parameter combinations (i.e.
for one methods vs. another with ; and 7 held constant).
Baseline and Partial Solution Sharing are always statistically
different (p < .003). When all experiments are considered

together, p becomes vanishingly small for Experiment 1 and
less than .0002 for Experiment 2.

To clarify just how well the Any-Com Algorithms perform
we note that, on average, Solution Sharing finds similar qual-
ity solutions using half the planning time as Baseline, while
Partial Solution Sharing finds similar quality solutions in one
quarter of the time! This is strong evidence that the robotic
team is functioning as an effective distributed computer.
Given that we are using N = 6 times as much computational
power, the lower bound on the ratio of required planning
time is 1/6. However, our observed value of at most 1/4 is
impressive given the minimal amount of information shared
between agents.

Another interesting trend is that solution quality does not
get much worse when communication becomes unreliable.
Theoretically, as 7 — 0 the results of Partial Solution Sharing
will approach those of Solution Sharing. There is a hint
of this effect in our results, especially for longer planning
times. However, it appears communication must drastically
deteriorate before Partial Solution Sharing begins to suffer.

V. MULTI-ROBOT TASK ALLOCATION

The multi-robot task allocation problem is concerned with
how to distribute r robots to [locations. In this paper we
are concerned with the spacial case » = [, but note that
our methods can easily be applied to cases where r # .
We also assume that all robots are identical with respect to
their functionality vs. a particular goal. That is, any robot
is equally qualified to be deployed to any goal. We seek a
solution that minimizes the total time required for all goals
to receive a robot. In the special case r = [the number of
possible robot vs. goal pairings reduces to (r!). Each solution
may or may not be possible, and some are more likely to be
better than others.

A. Methodology

In general, each set of robot vs. goal pairings is itself a
multi-robot path planning problem as the path length from
robot to task is part of the task-cost. Therefore, we build Any-
Com task allocation on top of Any-Com path planning. One
can envision a number of way this could be done, especially
since the problem space is so large. While we hope to explore
many other ideas in the future, here we focus on one simple
algorithm to illustrate the Any-Com design philosophy. Like
in the path-planning example, each robot selects a different
set of robot vs. goal locations and attempts to find the best
multi-robot path planning solution given those constraints.

In order to improve the likelihood to evaluate “good”
permutations early and to ensure that robots work on dif-
ferent areas of the search space, we use a heuristic to
divide the task-allocation search space. Each robot sorts
all permutations of start vs. goal location based on the
minimum possible solution assuming straight start-goal paths
for all robots (Euclidian distance). Next, the top r candidates
are divided among the top r robots based on robot ID
number. Alternatively, and analogue to the RRT algorithm
used in the path-planning example, this could be achieved

Planning Time: 2.5 sec

—e—Baseline
—o— Partial Solution Sharing|

Planning Time: 10 sec

—e—Baseline
) —o— Partial Solution Sharing|

Solution length (max time to goal)
Solution length (max time to goal)

1 0 1

02 04 06 08 02 04 06 08
Probability of successful message send Probability of successful message send

Fig. 4: Average Solution Lengths from Experiment 3.

by assigning a random permutation to each robot. Like in
the RRT algorithm, this approach bears the, albeit small, risk
that two robots evaluate the same permutation incidentally,
however. We compare Any-Com results to a client server
framework where one robot calculates a solution based on
the best heuristic-based set of robot vs. goal locations. The
latter system is called Baseline in this experiment, while the
Any-Com solution is called partial solution sharing.

B. Experiments and Results

One experiments (Experiment 3) is performed in simula-
tion as a proof of concept. There are 6 robots that must
get to 6 locations. The robots start in two vertical lines
on the edges of the workspace and must form a horizontal
line in the center of the workspace. As with experiments
1 and 2, we evaluate performance given message success
probability 7 and planning time p. We perform 20 runs per
each combination of parameters and algorithm. Mean and
standard deviations of the resulting solutions are displayed
in Figure 4.

Experiment 3 shows that Any-Com provides significant
improvement (p < .001) over the client server model in all
cases. The Any-com algorithm finds similar quality solutions
in roughly half the time than the client server model. As
with Experiment 1, solution quality degrades gracefully as
communication becomes unreliable.

VI. CONCLUSIONS

We propose the Any-Com paradigm and present two
example Any-Com algorithms—one for multi-robot path-
planning and one for multi-robot task allocation. The mo-
tivation behind Any-Com idea is that distributed robots
should adapt to use as much collaborative problem solving
as communication quality permits. This is useful for solv-
ing computationally intensive problems, and especially well
suited to problems involving multiple robots. Whereas some
multi-robot methods can function without communication,
they must restrict themselves to using only local information.
As such, they are unlikely to find globally optimal solutions
and may even fail when valid solutions exist. Whereas
complete algorithms are computationally expensive, they
must be used in worst-case scenarios. In these situations,
it makes sense to divide the computational effort among
all robots the solution will benefit. We note that complete
solutions to both the proposed NP-hard problem domains
scale poorly with increasing team-size. While scalability

classically is concerned only with computation, we argue
that the true bottleneck in such a scenario will be the ability
to communicate. Thus, an important aspect of Any-Com
algorithms is their capability to fall back to solutions that
do not require any communication. For path-planning this
is the cocktail party model, and for task allocation, this is
random allocation.

When designing Any-Com algorithms, non-critical parts of
the algorithm should be parallelized so that communication
disturbances do not prohibit an eventual solution from being
found, and successful communication helps better solution
to be found more quickly. Any-time algorithms are well
suited for modification into Any-Com algorithms because
they find a sub-optimal solution quickly then refine that
solution as time permits. The Any-Com approach adds
additional computational resources, along with a means of
communication, allowing the initial search and subsequent
refinement to happen in-parallel. This multiplies the amount
of solution refinement realized per time.

Our case-studies show that Any-Com provides significant
improvement vs. classical centralized methods. While this
investigation was focused on multi-robot navigation and task-
allocation, we stress that Any-Com idea is not limited to
this particular domain. Ideally, any robot in a particular
area should be able to donate computational resources to
help solve whatever collaborative problems are beneficial to
its mission. In future work we are interested in applying
the Any-Com paradigm to other classes of multi-robot co-
ordination problems as well as in developing a theoretical
framework for its analysis.

REFERENCES

[1] D. Ferguson and A. Stentz, “Anytime rrts,” in Proc. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2006, pp.
5369-5375.

[2] V.J.Lumelsky and K. R. Harinarayan, “Decentralized motion planning
for multiple mobile robots: The cocktail party model,” Autonomous
Robots, vol. 4, pp. 121-135, 1997.

[3] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Proc. International Symposium on
Robotics Research, 2009.

[4] Robotica, “Motion planning for multiple non-holonomic robots: a
geometric approach,” Robotica, vol. 26, pp. 525-536, 2008.

[5] M. Bonert, “Motion planning for multi-robot assembly systems,” M.S.
dissertation, University of Toronto, 1999.

[6] J. T. Schwartz and M. Sharir, “On the piano mover’s problem iii.
coordinating the motion of several independent bodies: the special
case of circular bodies amidst polygonal barriers.” in Proc. IEEE
International Conference on Robotics and Automation, 1985, pp. 514—
522.

[71 G. Ramanathan and V. S. Alagar, “Algorithmic motion planning
in robotics: coordinated motion of several disks amidst polygonal
obstacles,” in Proc. IEEE International Conference on Robotics and
Automation, 1985, pp. 514-522.

[8] C. M. Clark, S. M. Rock, and J.-C. Latombe, “Motion planning
for multiple mobile robots using dynamic networks,” in Proc. IEEE
International Conference on Robotics and Automation, 2003, pp.
4222-4227.

[9]1 G. Sanchez and J.-C. Latombe, “Using a prm planner to compare
centralized and decoupled planning for multi robot systems,” in Proc.
IEEE International Conference on Robotics and Automation, 2002.

[10] P. Amstutz, N. Correll, and A. Martinoli, “Adistributed boundary cov-
erage with a team of networked miniature robots using a robust market-
based algorithm,” Annals of Mathematics and Artifcial Intelligence,
vol. 52(2-4), pp. 307-333, 2009.

