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Abstract. We consider a scenario where agents search for targets in
a hazardous environment that prevents communication. Agents in the
field cannot communicate, and hazards are only directly observable by
the agents that are destroyed by them. Thus, beliefs about hazard loca-
tions must be inferred by sending agents to travel along various paths
and then observing which agents survive. In other words, agent survival
along a path can be used as a sensor for hazard detection; we call this
form of sensor a “path-based sensor”. We present a recursive Bayesian
update for path-based sensors, and leverage it to calculate the expected
information gained about both hazards and targets along a particular
path. We formalize the resulting iterative information based path plan-
ning problem that results from this scenario, and present an algorithm to
solve it. Agents iteratively foray into the field. The next path each agent
follows is calculated to maximize a weighted combination of the expected
information gained about targets and hazards (where the weighting is
defined by user preferences). The method is evaluated in Monte Carlo
simulations, and we observe that it outperforms other techniques.

1 Introduction

We are motivated by the following scenario: Autonomous agents are used to
help search for human survivors (“targets”) in a hazardous environment, but
wireless communication is prohibited. As agents gather information about sur-
vivors’ whereabouts, they must physically visit special “uplink sites” to upload
their information for use by humans and other agents (uplink sites may be, e.g.,
naval ships or bases). Information gathered by a particular agent is lost if that
agent is destroyed before reaching an uplink site. Hazards exist in the environ-
ment but are invisible. An agent cannot upload data about direct positive hazard
observations because the only way to positively “observe” a hazard is to be de-
stroyed by it. Luckily, indirect information about hazards can be inferred by
remembering which path an agent plans to take, and then observing whether or
not the agent survives a journey along that path. Agents are less likely to return
from paths containing adversaries than paths that are adversary free. Thus, we
can use path traversal as a sensor for detecting hazards, albeit indirectly—we
call this form of sensor a “path-based sensor”.

In this paper we show how observations from path-based sensors can be used
in a recursive Bayesian framework to refine our beliefs about whether or not
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Fig. 1: A-G: Search agents attempt seven paths ending at two uplink points (commu-
nication is impossible elsewhere). Three are destroyed at unknown locations (A,D,E).
Each agent’s path, combined with the observation of whether or not that agent sur-
vived, is a hazard sensor. H: The maximum information is gained by visiting a location
with 50% hazard probability (and not the location with the highest hazard probability).
On-board sensors simultaneously detect targets (e.g., human survivors, not shown).

hazards exist at various locations in the environment. We also show how to
calculate the expected information gain that will result from sending an agent
along a particular path and then observing whether or not it survives. Expected
information gain is defined as the expected reduction in the Shannon entropy
of our beliefs integrated over the distribution of possible events. In other words,
we seek paths that maximize mutual information [2, 14] between sensor readings
and our existing beliefs regarding hazards and targets.

The path-based sensor Bayesian update and expected information gain can be
used to plan paths that maximize: (A) the expected information gained about
hazard locations; (B) the expected information gained about target locations
while accounting for the agent’s survival given our belief about hazards; and (C)
a weighted linear combination of (A) and (B) as specified by a user.

The path-based sensor may produce false positives and/or false negatives.
False positives are possible if the agent malfunctions for reasons unrelated to
hazards. False negatives are possible because hazards may not destroy every
agent they encounter. We assume that agents malfunction every time they move
with a known probability pmalfunc ∈ [0, 1), and that hazards destroy agents they
encounter with a known probability pkill ∈ (0, 1]. If a hazard fails to destroy an
agent, then the hazard remains unobserved by that agent.

The recursive path-based sensor update and information theoretic equations
that we derive in this paper can be used to solve a variety of problems. A path-
sensor update is the appropriate tool to use whenever a vehicle follows a path
carrying a “one-time-use” sensor and yet when we have no direct way of observ-
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ing when the sensor is triggered. Other scenarios of this form include: radiation
or chemical source localization using single-use dosimeters that can be replaced
at “safe locations” (e.g., dosimeters that change color when encountering a par-
ticular chemical as a result of a chemical reaction); presence mapping of eco-
logical species, geological minerals, etc. where multiple specimens are collected
and mixed in a single container that must be returned before its contents can be
analyzed; a variety of other search and rescue settings (for example, in a civilian
setting targets, hazards, and uplink points may be the survivors of a nuclear
disaster, radiation sources, and a fixed communication links, respectively).

The rest of this paper is organized as follows: Related Work appears in Sec-
tion 2. Nomenclature is introduced in Section 3. The recursive Bayesian update
for the path-based sensor and the information theoretic calculations are de-
scribed in Section 4. The problem we solve is formally defined in Section 5, and
an algorithm to solve it is described in Section 6. In Section 7 we run a num-
ber of Monte Carlo simulations to evaluate our algorithm and compare it to
other methods that have previously been used to solve related problems. Our
conclusions are presented in Section 8.

2 Related Work

Surveys of previous work on target search can be found in [1] and [11]. The
main difference between our work and previous work is the scenario considered:
path planning to maximize information gain about targets and hazards in an
environment where hazards can destroy agents and communication is impossible.
Most previous work investigating target search in hazardous environments has
assumed agents are able to communicate from any location in the environment.

The approach presented in [13] shares two important similarities with our
work: recursive Bayesian filters are used to update estimates of both target
and hazard locations, and the probability that an agent may be destroyed at
different locations is used for calculating the mutual information that can be
gained about targets. Unlike the problem we consider, [13] assumes that robots
can always communicate, which makes agent failure locations directly observable.
Our assumption that agents cannot communicate from the field means it is
impossible to know where agents are destroyed; and therefore we must use a
path-based sensor to gather indirect evidence of hazard positions.

Other differences between our work and [13] include: (i) we are interested in
planning multi-step paths subject to fuel constraints (while [13] uses informa-
tion surfing3, a greedy 1-step look-ahead approach that does not consider fuel
constraints); (ii) we explore a family of techniques that enable path optimization
for any weighted combination of the expected information gained about targets

3In “information surfing” methods an/the agent(s) continually moves “up” a gra-
dient of mutual information using a greedy 1-step look-ahead.
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and hazards4; (iii) a continuous space formulation is used in [13], and targets
are assumed to emit a random signal that is a function over the entire search
space. We consider a discrete formulation in which each map cell either does or
does not contain a target and/or hazard.

The target information gathering control problem is studied in [9]; mutual
information associated with (only) an environmental monitoring mission is con-
sidered and information is gathered about environmental state without the pos-
sibility of agent failures. The first formal derivation of the gradient of mutual
information is also presented in [9], and it is proven that a multi-agent control
policy of gradient ascent will converge (gather all information), in the limit. The
authors consider a multi-agent mutual information target-localization control
[3], again using 1-step look-ahead information surfing. In [5] the method from
[3] was implemented on a test-bed and used to demonstrate localization of mag-
netic sources by quad-rotor aircraft. Two of the authors present a multi-agent
information gathering control policies in [4], using both 1-step look-ahead and a
3-step receding horizon control. The main focus of [3–5] is a decentralized multi-
agent control formulation. Our work differs from the aforementioned works [9,
3, 5, 4] in that we consider a scenario in which hazards can destroy agents.

Receding horizon control for gathering information about a moving target
following a random walk in the underwater domain is presented in [8]. Similarities
to our work include an assumption that long breaks in communication may
occur (in [8] this happens when agents are submerged). Our work differs from
[8] both in the scenario considered ([8] considers a moving target and assumes
false positives are negligible), and in the type of solution that is computed ([8]
focuses on distributed multi-agent control—testing horizons of 1 and 4).

A number of other works consider the risk of agent loss within a search or
target tracking task. A branch-and-bound technique is used to find paths for
search over graphs that attempt to simultaneously optimize vs. cost functions
defined over fuel constraints, time, risk, and (optionally) the path endpoint [12].
A neural network based strategy is proven to be robust to partial loss of UAVs; in-
dividual planners maximize a heuristic function while learning how other agents
tend to behave in various situations [17]. In [7] threats are considered and the
robot moves in order to decrease a custom heuristic value based on a proba-
bility map, while preliminary work by the same authors that does not consider
threats appears in [6]. In [16] agents consider other vehicles to be soft obstacles
that present dynamic threats, and use “approximate” dynamic programming to
plan movements that maximize a heuristic combination of target confirmation,
environment exploration, and threat avoidance given updated values of threat
probability, target probability, and the certainty of these beliefs. Agent loss in
hazardous environments with moving (and hostile) targets is considered in [15].
Targets are assumed to move at a constant speed, and agents use a sweeping

4Although [13] uses hazard probabilities to help calculate the expected information
gain regarding targets, hazard information is not directly considered as part of the
objective function.
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formation that is adjusted as agents are destroyed. In [10] the probability that
at least k of n robots survive a hazardous multipath is maximized.

3 Nomenclature

The search space is denoted S and is assumed to be a subset of two dimensional
Euclidean space S ⊂ R2. The vector s ∈ S describes a point in S.

Let X denote the state of the environment with respect to target presence.
In general, X is a discrete time random variable that takes values on alphabet
X . For the stationary target task that we consider, X is constant over time. Y
is a sensor observation (also a random variable) of a portion of the environment
that takes values on an alphabet Y. We assume that environmental sensor mea-
surements occur at discrete times and are indexed by the variable t = 1, 2, 3 . . ..

Let Z denote the state of the environment with respect to hazard presence,
where Z is a discrete time random variable that takes values on alphabet Z.
Let Q be an observation of a failure event at a location in the environment,
where Q takes values on alphabet Q. Even though we cannot directly observe
agent failures, we can still reason about the probability that they occur; thus,
defining Q is useful. We assume the environment is discretized such that paths
are broken to a finite number of edges between nodes. The traversal of path
segments from node to node is modeled (for the purpose of hazard inference) by
a global discrete time counter that uses the variable τ = 1, 2, 3 . . .. Target sensor
measurements may happen independently of path segment traversals such that
τ 6= t, in general. We assume the ability to track both τ and t (independently).

We are provided a set W of k fixed uplink sites, W = {w1, . . . , wk} where
agents can upload the data they collect, e.g., for future use. A path ζ is a mapping
from the interval [0, 1] to the state space S. We will assume that paths are piece-
wise continuous curves that start and end at uplink sites. Formally, ζ : [0, 1]→ S
such that ζ(0) = sstart = wa and ζ(1) = sgoal = wb for wa, wb ∈W . We allow
both wa = wb and wa 6= wb. With an abuse of notation (made to improve the
overall clarity of our presentation) we overload the symbol ζ to additionally
represent the set of points contained in the path that it defines.

The robot is assumed to take sensor measurements regarding target presence
as it travels along the path. In this paper we consider the discrete case where
one observation is made at each node in the path. Given this assumption, and
assuming that t measurements have already been taken before an agent starts
moving along its path, then the successful completion of a path provides an
ordered finite set of sensor observations {yt+1, . . . , yt+`}, where yk is taken at
position sk ∈ ζ and t+ 1 ≤ k ≤ t+ `, where ` is the number of sensor readings
taken along the path ζ.

Given a hazardous environment (as well as a nominal probability of agent
failure), the successful traversal of the path is itself a random event that de-
pends on both the path taken, and the hazards in the environment. Let θζ,alive
and θζ,dead denote the complementary events that the robot survives the path
ζ or does not, respectively. Let Θζ be the random variable associated with sur-
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vival of a path ζ. In general, the probability of these events is defined by a
functional that accounts for motion along the path, and environmental hazards.
P (Θζ = θζ,alive|Z) = f(ζ, Z) and P (Θζ = θζ,dead|Z) = 1 − P (Θζ = θζ,alive|Z).
The particular form of f depends on the way that the environment is mod-
eled. In our experiments we assume that hazards destroy agents transiting their
map cells with probability pkill ∈ (0, 1], and that agents also malfunction with
probability pmalfunc ∈ [0, 1) in each cell.

4 Bayesian belief updates and expected information gain

The recursive Bayesian update for the path-based sensor requires a discrete
time model. This model supports continuous paths, so long as the path can be
partitioned into a finite number ` of path segments in order to reason about
the location of the map cell in which an agent may have been destroyed. In
a positive path-based sensor “observation” of a hazard the observing agent is
destroyed, which prevents it from relaying direct knowledge about the hazard
to other agents. However, a belief update is possible by considering separately
each possibility (the finite set of mutually exclusive events that the agent was
destroyed while traveling along each segment k ∈ [1, `]), and then combining
the resulting ` separate belief maps weighted by the relative likelihood of each
occurring. Whenever the agent survives the path we can directly update our
belief map based on negative hazard observation occurring along each of the `
segments in the path.

4.1 Target updates (assuming a standard sensor)

Let X0 denote the prior belief defined over S that each point s ∈ S contains a
target. For notational convenience, we increment the time index t based on the
number of successfully communicated sensor measurements, i.e., t ordered sensor
observations have been delivered to the uplink points by time t. Given sensor
measurements y1, . . . , yt (which may have been taken across multiple paths of
varying lengths) and X0, an iterative Bayesian update can be used to compute
P (Xt|y1, . . . , yt), the posterior probability of X given the t sensor readings de-
livered to the uplink points by time t.

P (Xt|Y1 = y1, . . . , Yt = yt) = P(Yt=yt|Xt−1)P(Xt−1|Y1=y1,...,Yt−1=yt−1)
P(Yt=yt|Y1=y1,...,Yt−1=yt−1)

(1)

As is standard practice, the denominator need not be explicitly calculated;
rather, we calculate the numerators of equation 1 for all events Xt = x ∈ X
and then normalize so that they sum to 1.

The information entropy of Xt is denoted H(Xt) and defined:

H(Xt) = −
∫
x∈X

P (Xt) logP (Xt) dx



Planning for Information Gathering with Hazards and No Communication 7

and provides a measure of the unpredictability of Xt. As entropy increases, Xt

is essentially “worse” at being able to predict the presence or absence of a target
(in other words, its values are closer to a uniformly random process).

The conditional information entropy H(Xt+1|Yt+1) is the updated entropy
of the environmental state X (w.r.t. target presence) given a new observation
Yt+1, averaged over all possible values that Yt+1 may take. The difference between
the entropy H(Xt) and the conditional entropy H(Xt+1|Yt+1) is called mutual
information, defined I(Xt;Yt+1) = H(Xt)−H(Xt+1|Yt+1). Mutual information
quantifies the expected reduction in the unpredictability of our estimation of X
given the new measurement Yt+1.

It is useful to calculate the mutual information of a new (target sensor) mea-
surement Yt+1 before it is taken, so that we may compare the expected benefits
of sampling various locations. The mutual information of a new observation (as-
suming it is delivered to a communication point) is calculated:

I(Xt;Yt+1) =

∫
y∈Y

∫
x∈X

P (Yt+1 = y,Xt = x) log

(
P (Yt+1 = y,Xt = x)

P (Yt+1 = y)P (Xt = x)

)
dxdy

where P (Yt+1 = y,Xt = x) = P (Yt+1 = y|Xt = x)P (Xt = x).

We want to plan paths that gather as much mutual information along the
path as possible, given fuel constraints and other goals. Another goal, for ex-
ample, is to also gather information about hazard locations (hazards are dis-
cussed in the next subsection). Given a path ζ that enables sensor observations
yt+1, . . . , yt+` if and only if it is completed successfully, the expected cumulative
information gained along that path (given all measurements so far) is calculated:

I(Xt;Yt+1, . . . , Yt+`) =
∑t+`
k=t+1 I(Xk−1;Yk|Yt+1, . . . , Yk−1)

Where the notation I(A;B|C) denotes the conditional mutual information of
A and B, integrated over all possible outcomes in the event space of C (and
weighted by their relative likelihood). That is, I(A;B|C) = EC (I(A;B)|C).

In the most general case (in which targets at any locations in the envi-
ronment may affect sensor readings at any other location) the calculation of
I(Xt;Yt+1, . . . , Yt+`) can become intractable because the number of terms in-
volved in the computation of the inner I(Xk−1;Yk|Yt+1, . . . , Yk−1) scales accord-
ing to |Y|k. However, this complexity can be reduced, e.g., to a small constant,
by assuming that each target only affect sensor observations in its own local
neighborhood.

From the point-of-view of the planning system, no information about target
locations is actually gained until the robot reaches an uplink point. Hence, no
information about targets is gathered in the event that the robot is destroyed
along its path. Consequently, the expected mutual information along a particular
path (assuming the robot may or may not be destroyed along that path) is:

I(Xt;Yt+1, . . . , Yt+`|Θζ) = P (Θζ = θζ,alive) I(Xt;Yt+1, . . . , Yt+`).
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4.2 Hazard updates (assuming a path-based sensor)

Environmental hazards may prohibit agents from reaching their intended desti-
nations. Thus, we can update our belief about environmental hazards Z by ob-
serving whether or not agents reach their destinations. Both events Θζ = θζ,alive
and Θζ = θζ,dead can be used to perform an iterative Bayesian update of Z based
on ζ. However, the iterative updates to Z based on Θζ take different forms de-
pending on if Θζ = θζ,alive or Θζ = θζ,dead.

We begin by noting that if we had access to data of hazard observations at
all cells along the path, then a straightforward belief update is as follows:

P (Zτ+j |Zτ , Qτ+1 = qτ+1, . . . , Qτ+j−1 = qτ+j−1) =

P (Qτ+j = qτ+j |Zτ+j−1)P (Zτ+j−1|Zτ , Qτ+1 = qτ+1, . . . , Qτ+j−1 = qτ+j−1)

P (Qτ = qτ |Zτ , Qτ+1 = qτ+1, . . . , Qτ+j−1 = qτ+j−1)
(2)

Next, we observe that whenever an agent survives we do have direct access
to all “observations” of hazards along the path, and they are Qj = qj = 0 by
construction (since the agent survived). Formally, Θζ = θζ,alive ⇐⇒ qτ+1 =
0, . . . , qτ+l = 0. Thus, we simply perform the standard update:

P (Zτ+j |Θζ = θζ,alive) = P (Zτ+l|Zτ , Qτ+1 = 0, . . . , Qτ+l = 0)

which can be computed iteratively, for each j = 1, . . . , l as follows:

P (Zτ+j |Zτ , Qτ+1 = 0, . . . , Qτ+j−1 = 0) =
P(Qτ+j=0|Zτ+j−1)P(Zτ+j−1|Zτ ,Qτ+1=0,...,Qτ+j−1=0)

P(Qτ=0|Zτ ,Qτ+1=0,...,Qτ+j−1=0)

In contrast, when an agent does not survive (Θζ = θζ,dead) the recursive
Bayesian update of Z must take a different form. Given a path with l segments,
with the first segment starting at time τ , the event Qτ+j = 1 is equivalent to
the statement “the agent was killed along the j-th segment of the path”.

Given Θζ = θζ,dead, we know that the agent was killed somewhere along ζ,
but we do not know where. However, we can integrate over all l possibilities, i.e.,
considering each possibility that the robot was killed on path segment j for all
j such that 1 ≤ j ≤ l, and then summing these results weighted by the relative
probability of each (given our current hazard beliefs).

It is convenient to use the metaphor of a multiverse. We simultaneously
assume the existence of j different universes, such that in the j-th universe the
agent was killed along the j-th path segment. Assuming we are in a particular
j-th universe, we can calculate the iterative Bayesian update to Z by applying
Equation 2 exactly j times, assuming that on the k-th application:

Qτ+k = qτ+k =

{
0 if k < j

1 if k = j

and where no observations are made for k > j in the j-th universe. Let Zjτ+l
denote the version of Zτ+l that is calculated in the j-th universe.
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The final overall update to the “real” Zτ+l is the expected value of Zτ+l in the
multiverse, found by combining all Zτ+l weighted by P (Qτ+j = 1|Zτ , Θζ = θζ,dead),
the probability of being in the j-th universe.

Zτ+l =

l∑
j=1

P (Qτ+j = 1|Zτ , Θζ = θζ,dead)Zjτ+l (3)

The quantity P (Qτ+j = 1|Zτ , Θζ = θζ,dead) can be obtained by calculating
the probability that the agent survives to the j-th path segment given Zτ and
is then destroyed there, and then normalizing such that the probabilities of all l
possibilities sum to 1.

P (Qτ+j = 1, Zτ , Θζ = θζ,dead) =
P (Qτ+j = 1, Zτ )

∏j−1
k=1 P (Qτ+k = 0, Zτ )∑l

j=1 P (Qτ+j = 1, Zτ )
∏j−1
k=1 P (Qτ+k = 0, Zτ )

where P (Qτ+k = q, Zτ ) =
∫
z∈Z P (Qτ+k = q|Zτ = zτ )P (Zτ = zτ ) dz for q ∈ {0, 1}.

The expected decrease in entropy about hazard locations gained from sending
an agent along path ζ can be calculated by first calculating the conditional
decrease in entropy assuming either possibility of Θζ = θζ,alive and Θζ = θζ,dead
(i.e, independently), and then combining the results weighted by the probability
of each event given Zτ .

Let Z
θζ,alive
τ+l be the value of Zτ+l that results if the agent survives the path

(as calculated according to Equation 2). Similarly, let Z
θζ,dead
τ+l be the result if

the agent does not survive (as calculated by Equation 3).
The mutual information regarding hazards (the expected information gained

from a path-based sensor observation) is given by the expected reduction in
entropy: I(Zτ ;Θζ) = H(Zτ )−H(Zτ+l|Θζ , Zτ ), where

H(Zτ+l|Θζ , Zτ ) =
∫
θ
P (Θζ = θ|Zτ )H(Zτ+l|Θζ = θ, Zτ )dθ

is the conditional entropy, and P (Θζ = θζ,alive|Zτ ) =
∏l
j=1 P (Qτ+j = 0, Zτ ) and

P (Θζ = θζ,dead|Zτ ) = 1 − P (Θζ = θζ,alive|Zτ ) and H(Zτ+l|Θζ = θζ,alive, Zτ ) =

Z
θζ,alive
τ+l and H(Zτ+l|Θζ = θζ,dead, Zτ ) = Z

θζ,dead
τ+l .

5 Formal Problem Definitions

Problem Definition. Mutual information path planning for targets and hazards
without communication:

Given a search space S, and a set of uplink points {w1, . . . , wk} = W ⊂ S,
and assuming an agent can start at any wstart ∈ S and end at any wgoal ∈ S,
and assuming an agent has a noisy target sensor that provides observations Y
about targets X. Find the path ζ∗ that maximizes the expected information
gain about both targets X and hazards Z:

ζ∗ = arg max
ζ

cXI(Xt;Yt+1, . . . , Yt+`|Θζ) + cZI(Zτ ;Θζ)
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where cX , cZ ∈ [0, 1] are weights that represent user preference for either type
of information, and where for all ζ it is true that ζ : [0, 1]→ S s.t. ζ(0) = wstart
and ζ(1) = wgoal, subject to distance constraints ‖ζ‖ < `, and Θζ is the space
of observations about whether or not the agent successfully completes the path.

Problem Definition. Iterative mutual information path planning for targets
and hazards without communication:

Repeatedly solve the mutual information path planning for targets and haz-
ards problem to continually refine our belief about targets X and hazards Z
given Y and Θζ , respectively; assuming we are able to replace agents that are
lost (once their failure to appear at their destinations as been observed).

6 Algorithms

The environment is modeled as discrete map M of non-overlapping cellsMi ⊂M,
where 1 ≤ i ≤ m and Mi ∩Mj = ∅ for i 6= j. Target and adversary effects are
assumed local to the map cells containing those targets and adversaries, respec-
tively. These assumptions are useful in practice because they reduce computa-
tional complexity. To simplify our presentation the same map M =

⋃
i∈[1,m]Mi

is used to reason about both targets and hazard. Because target and hazard ef-
fects are local to each cell, our beliefs about targets (and hazards) are stored in
arrays X (and Z), where X[i] (and Z[i]) are our current belief that map cell Mi

contains a target5 (respectively, a hazard). Connectivity information is stored in
a graph GS = (VS, ES). Each map cell Mi has a corresponding node vi ∈ VS,
and an edge (vi, vj) ∈ ES indicates it is possible to move directly between map
cells Mi and Mj . Self transitions (vi, vi) ∈ ES are allowed, but can be removed
in cases where agents must remain in motion.

Mutual information is sub-modular—there are diminishing returns for visit-
ing the same cell again and again. Therefore, we plan in GS×T = (VS×T, ES×T)
the space-time extension of GS, to track cell visit counts along a path. Agents
have fuel for ` moves, so GS×T is created by placing a “clone” VS,t ≡ VS at each of
the 0 ≤ t ≤ `+ 1 time steps that must be considered, i.e., VS×T = VS,0 ∪ . . . ∪ VS,`.
Edges in ES×T move forward in time, and exist according to the following rule:
(vi, vj) ∈ ES =⇒ (v̂i,t−1, v̂j,t) ∈ ES×T for all t ∈ [1, `]. A valid path ζvalid is
a sequence of edges that starts at some uplink site wstart = v̂j,0 at time t = 0
and moves from node to node along edges in space-time until reaching a (goal)
uplink site wgoal = v̂j,` at time t = `.

5In the most general discrete formulation of the ideas presented in Sections 3-5,
target existence across all cells in the map is represented by a single random variable
X that takes one of the 2m different possible values x (depending on which cells con-
tain targets and which do not). The set of all 2m possibilities forms the alphabet X .
However, if each target only affects target sensor readings in its own cell, then the
resulting independence between cells allows us to consider each of the m dimensions of
X separately. In other words, we can consider X as a joint event over a collection of
independent random variables X1, . . . , Xm because P (X = x) =

∏m
i=1 P (Xi = xi). We

store our current estimate of P (Xi = xi) in X[i].
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If β is a belief that one of two complementary events has occurred, its entropy
is calculated: H(β) = −(β log(β) + (1− β) log(1− β)). Given our assumption of
cell independence, total entropy regarding targets is H(X) =

∑m
i=1H(X[i]) and

total entropy regarding hazards is H(Z) =
∑m
i=1H(Z[i]). Let paliveζ ≡ P (θζ,alive)

and pdeadζ ≡ P (θζ,dead).

The outer loop of the iterative planning approach appears in Algorithm 1,
and the algorithm used to plan each path appears in Algorithm 3. We track
the expected entropy that results from attempting paths using the arrays Xζ

and Zζ (for targets and hazards , respectively). Xζ ≡ Eζ (X), where Eζ (X) =
paliveζ Eζ (X|θζ,alive) + pdeadζ Eζ (X|θζ,dead). All sensor readings about targets are

lost if the agent is killed, thus Eζ (X|θζ,dead) = 0 and so Eζ (X) = paliveζ Eζ (X|θζ,alive).
In contrast, information about hazard existence is gained both if the agent sur-
vives or if the agent is destroyed (though different amounts in either case). We
use the vectors Zalive

ζ ≡ Eζ (Z|θζ,alive) and Zdead
ζ ≡ Eζ (Z|θζ,dead) to track the

conditional expectations of Zζ that will result if the agent survives or is killed
along path ζ. This allows us to compute Zζ ≡ Eζ (Z) = paliveζ Zalive

ζ +pdeadζ Zdead
ζ .

Cell-wise target and hazard observations made along path ζ are stored in the
vectors Yζ and Qζ , where Yζ [k] and Qζ [k] are the observations made in the k-th
cell along the path. Yζ [k] ∈ {1, 0} where 1 denotes that a sensor reading was
positive and 0 denotes that a sensor reading was negative. Similarily, Qζ [k] ∈
{1, 0}, where 1 represents a hazard observation and 1 denotes a negative (cell-
wise) reading. Even though it is impossible for an agent to directly report a
hazard observation, Qζ is used for two things: first, Qζ [k] = 0 for all k ∈ [0, `]

Algorithm 1 Iterative information path plan-
ning for targets and hazards

1: for r = 1, 2, . . . do
2: ζ = calculatePath(X,Z)
3: Robot r attempts path ζ
4: if θζ,alive then
5: X← BayesianCellUpdates(X,Yζ)
6: Z← BayesianCellUpdates(Z, [0, . . . , 0])
7: else
8: Z← KilledOnPathUpdate(Z)

Algorithm 2 KilledOnPathUpdate(Z, ζ)

1: psurvivedTo1 ← 1
2: for k ← 1, . . . , ` do
3: i← index of cell in which k-th observation was

made
4: pkilledInGivenAtk ← (pkill + pmalfunc(1− pkill))Z[i]

+pmalfunc(1− Z[i])
5: psurvivedTok+1 ← psurvivedTok (1− pkilledInGivenAtk )
6: Zk ← Z
7: Zk ← BayesianCellUpdates(Zk, [01:k−1, 1])
8: pdeadζ ←

∑`
k=1 p

survivedTo
k

9: Z←
∑`
k=1

psurvivedTok

pdead
ζ

Zk

10: return (Z, (1− pdeadζ )

Algorithm 3 calculatePath(X,Z)

1: for all uplink points w ∈Wgoal do
2: ζw ← ∅
3: InsertFIFOQueue(w)
4: while v̂j ← PopFIFOQueue do
5: hv̂j = −∞
6: for all (v̂i, v̂j) ∈ ES×T do
7: ζ ← (v̂i, v̂j) + ζv̂j
8: ĥXlive ←

∫
x∈X H(Xlive)dx

9: (Zlive, p
alive
ζ )← KilledOnPathUpdate(Z, ζ)

10: Zkilled ← BayesianCellUpdates(Z, [0, . . . , 0])
11: ĥthis ← cZ(paliveζ H(Zlive) + (1 −

paliveζ )H(Zkilled)) + cXp
alive
ζ ĥXlive

12: if ĥthis > hv̂j then
13: ζv̂i ← ζ
14: hv̂j ← hthis
15: wstart ← arg minw∈Wgoal

v̂j
16: return ζwstart

Algorithm 4 BayesianCellUpdates(B, β̄)

1: for k = 0, . . . , ` do
2: i← index of cell in which k-th observation was

made
3: B[i]← P

(
Bi |B[i], β̄[k]

)
4: return B
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Fig. 2: Top to Bottom: Adversary and target existence beliefs and their entropies over
time. Left two columns relate to targets. Right two columns to hazards. Center column
is the sum of target and hazard entropies. Paths are calculated to maximize the (user
weighted) reduction in entropy over the set of complementary events that the agent
survives or is destroyed, weighted by their probability. At t = 1 the prior beliefs of
hazard and target existence are 0.01 and 0.05 in each map cell. At t = 300 the agent
has accurate beliefs of all 10 hazards and 19 of 20 targets, and is working (at high
risk of being destroyed) to gather target existence information in a cell that contains
a known hazard. In this trial hazards have a 50% kill rate.

when an agent survives. Second, the algorithm tracks a different version of Qζ

for each member of the set of possible events, when reasoning about the relative
probabilities of survival to different places along a path.

Algorithm 4 shows the recursive Bayesian update that is used for the belief
vector β̄ given the observation vector Bi. Depending on context β̄ may represent
Yζ or Qζ , and B may represent X and Z. Line 3 performs the recursive update
yielding the posterior probability Bi regarding existence in the i-th map cell.

7 Experiments

We use Monte Carlo trials in simulation to evaluate the performance of the al-
gorithm presented in Section 6, and compare it to other approaches. For the ex-
periments presented in this section, the environment is represented by a 15× 15
grid map. Movement is defined by a 9-grid of connectivity (8-grid neighbors plus
self transitions) where each move takes the agent one time-step further in time.
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Fig. 3: Hazard and Target entropies vs. search round (mean over 30 random trials)
when hazards have a 60% kill ratio. Left: an equally weighted (C = [11]) combination
of hazard and target entropy. Center: Target entropy. Right: Hazard entropy.
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Fig. 4: Left: Target statistics. Center: Hazard statistics. Right: total agent losses over
time. Statistics include true/false positives and false negatives of target locations. Like-
lihood ≥ .95 is defined as a positive detection. All plots show mean results over 30
random trials. In these experiments hazards have a 60% kill success rate. (Agents are
expendable such that any costs associated with their losses are negligible compared to
the information that is gained from their loss).
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The agent has enough endurance to make 25 moves. Agent malfunction rate is
pmalfunc = .01 per time step (thus, on average agents arbitrarily malfunction in
1/4 of all forays of length 25). In each trial the start and goal uplink points are
placed uniformly at random. 10 non-start/goal locations are picked uniformly at
random (no replacement) and populated with hazards. This is repeated for 20
non-start/goal locations that are populated with targets.

We test our algorithm using three different objectives: weighting information
from targets and hazards equally cX , cZ = {1, 1}; gathering only target infor-
mation cX , cZ = {1, 0}; and gathering only hazard information cX , cZ = {0, 1}.
We compare to three other ideas: (1) 1-step look ahead information surfing6;
(2) a Markov random walk; and (3) planning paths to gather target information
while ignoring hazards altogether (by not accounting for the probability of be-
ing destroyed when evaluating the expected information gain, and assuming a
cX , cZ = {1, 0} objective).

Our method and information surfing both track and update target and haz-
ard beliefs, and use the probability of hazard existence to weight the expected
information that will be gained about targets and/or hazards. The path of the
random walk is calculated before the agent departs such that the resulting-path
sensor can be used to infer hazard presence based on whether or not it survives.
In all methods agent movement is only allowed in directions from which the
agent can still reach the goal given its fuel reserves.

Figure 2 shows examples paths for an experiment in the same environment
with adversary lethality of 0.5. To generate performance statistics, each method
is tested on (the same) 30 randomly generated configurations, and across six
different adversary lethality levels (0.01, 0.2, 0.4, 0.6, 0.8, and 0.99). Due to
space limitations we only present results for the 0.6 case. In Figures 3 and 4
and results for other cases appear in supplementary material available on the
first author’s website. Regarding the calculation of true/false positives, if target
existence belief is ≥ 0.95 in a cell, then we declare that we think there is a
target in that cell. Likewise, for hazards. The relative performance of different
methods is similar across hazard lethality rates, though increasing lethality rates
make the detection of hazards easier and the detection of targets harder for all
methods.

6In “information surfing” the path is greedily computed—the path is initially un-
known when that agent leaves the start and then the path is computed on-the-fly.
Hazard existence belief is tracked and used to determine the expected information
that will be gained about targets. In practice, the destruction of an agent eliminates
direct knowledge of the path taken by the agent. While it may be possible to integrate
over all possible paths the agent could have taken to obtain a valid update, this com-
putation is at least as hard as the algorithm we present for planning the optimal path.
Instead, for the purposes of comparison we choose to be overly generous to “informa-
tion surfing” and (unrealistically) assume that if the agent is destroyed, then we still
know the path that it would have taken to the goal had it not been destroyed. Using
this path to refine hazard beliefs (by calculating the relative likelihood the agent was
destroyed on each segment) provides a performance bound such that the results for
“information surfing” are better than what is expected in practice.
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The method we present consistently outperforms the other methods on the
objective it seeks to maximize. However, in the case cX , cZ = {0, 1} for which
our method seeks information about only hazards and not targets, then all of the
comparison methods initially have more accurate beliefs regarding target exis-
tence (however they also all eventually fall behind our method at later iterations).
This makes sense given that our algorithm is completely ignoring target infor-
mation in its mission objective in that particular case. In general, “Information
surfing” performs better than the random walk, but not as well as full infor-
mation based path planning. Information based target search that completely
ignores the possibly of being destroyed by a hazard has the worst performance of
all methods tested. This is because target beliefs remain unchanged in the event
that agents are destroyed—if hazards are ignored then subsequent agents will
continue to attempt the same dangerous path until it is successfully completed.

8 Summary and Conclusion

An agent’s path can be used as a binary sensor (to detect the occurrence of at
least one event along that path), and we show how to compute recursive Bayesian
updates given such path-based sensor observations. In hazardous environments
where communication with an agent is impossible until it physically returns,
this allows the existence of lethal hazards to be inferred based on whether or not
agents survive forays along paths.

By calculating the expected information that will be gained along different
paths, we are able to maximize the information about hazards that is expected to
be gained along each foray. This idea is combined with standard Bayesian target
search to provide a family of algorithms for solving the problem of iterative path
planing for target search in hazardous environments without communication.

In Monte Carlo simulations presented in Section 7 we find that the algorithms
perform favorably vs. three related ideas including: (1) “information surfing”
which has been shown to work well for the related problem of target search in
a hazardous environment with communication; (2) performing informative path
planning for targets while ignoring hazards; and (3) a Markov random walk
that is computed before the agent leaves. When the mission objective is set
to maximize the information that is collected regarding targets, hazards, or a
weighted combination of both, then the detection of targets, hazards, or both are
respectively maximized (based on 95% belief defining a positive observation).

The Bayesian belief updates for a path-based sensor can be useful even if
agents do not use hazard information in their mission objectives. For example,
using random walks will eventually result in accurate beliefs of hazard existence
(at least, almost surely in the limit). Thus, even if agents perform a variety of
other missions in the environment, we can still use observations of their survival
vs. destruction to refine our beliefs of hazard locations.
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