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Abstract—Motion planning for multi-target autonomous search
requires efficiently gathering as much information over an area
as possible with an imperfect sensor. In disaster scenarios and
contested environments the spatial connectivity may unexpectedly
change (due to aftershock, avalanche, flood, building collapse,
adversary movements, etc.) and the flight envelope may evolve
as a known function of time to ensure rescue worker safety or
to facilitate other mission goals. Algorithms designed to handle
both expected and unexpected changes must: (1) reason over
a sufficiently long time horizon to respect expected changes,
and (2) replan quickly in response to unexpected changes.
These ambitions are hindered by the submodularity property
of mutual information, which makes optimal solutions NP-hard
to compute. We present an algorithm for autonomous search
in changing environments that uses a variety of techniques to
improve both the speed and time horizon, including using e-
admissible heuristics to speed up the search.

I. INTRODUCTION

When earthquakes and other disasters occur in remote ar-
eas, damage to transportation infrastructure can hinder search
efforts by limiting ground access to the affected areas. Search
for survivors is becoming increasingly supported by micro
aerial vehicles (MAVs) as MAVs become cheaper and easier to
deploy. For example, in the 2015 earthquake in Nepal, Cana-
dian relief teams used 3 small MAVs to assess the area and
direct relief efforts despite a lack of ground access to villages
[1]. We consider a related scenario in which aerial vehicles
fly at low altitudes, navigating rubble and other obstacles,
through ruined buildings suspected of containing survivors.
A critical yet previously unaddressed aspect of this scenario
is that disaster environments are subject to change. Access
to some areas may be unexpectedly lost due to aftershock,
avalanche, flood, building collapse, etc., or gained as rescue
teams clear pathways to unexplored areas. MAVs may also
be required to follow a schedule of changing no-fly zones to
share space with human rescue teams.
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Fig. 1. Multipass coverage plan example for the 2015 Nepal Earthquake. (a)
Aerial view. (b) Regions (color) with grids depicted in the lower-right region
(grid size has been enlarged for illustration). (c) The resulting multi-pass
search over the area at full resolution (color indicates pass count).

For this work we will focus on the following aspects of
changing environments: targets may appear or disappear from
view over time, and access to regions of the environment
may only be available intermittently but known a priori.
Formulating multi-target search in terms of maximizing mutual
information allows us to formally reason about the tradeoffs
inherent to a multi-pass search. For example, performing
additional passes over a particular area provides a better under-
standing of that area given noisy sensors, but each subsequent
pass has diminishing returns with respect to the amount of new
information that is obtained. Maximizing mutual information
in changing environments presents a variety of challenges.
Algorithms must run quickly enough to react on-the-fly to
unexpected changes, while using long enough time horizons
to accurately model environmental changes that are scheduled
a priori.

Many previous information theoretic techniques are insuf-
ficient to solve this type of problem. Both greedy approaches
[2]-[4] and model predictive control [5] can react quickly
enough to deal with unexpected changes, but are myopic
and may get trapped by long-term changes—even long-term
changes known a priori. However, there exist bounds in
which greedy algorithms perform compared to the optimal
solution [6,7]. Partially observable Markov decision processes
(POMDPs) account for uncertainties [8], but suffer from a
computational complexity that makes them ill-equipped to



deal with large environments that change in unanticipated
ways. While discrete [9] or sample based information search
algorithms [10] are capable of finding resolution optimal or
asymptotically optimal solutions, respectively, they have pre-
viously only been applied in very simple static environments
where the computational complexity of calculating mutual
information scales exponentially with respect to time horizon.

In this paper we show how discrete search algorithms can
be modified to enable planning through changing environments
in a more efficient manner. First, we use a hierarchical data
structure that groups similar and contiguous search grids into
sets called regions. Branch and bound search is performed over
regions instead of grids, which enables the time spent finding
the first solution to be /inear with the size of the evidence grid
instead of exponential (it is still exponential with respect to
the number of regions, which is deliberately kept as small as
possible). We also exploit an equivalence that exists between
different paths that cover the same search area, to prune
redundant portions of the search space. In addition to using
known bounding heuristics to speed branch and bound search,
we developed a priority queue sorting heuristic that speeds
search by biasing search effort in a beneficial way. We also
experiment with an e-admissible heuristic that dramatically
increases search speed by about 2 orders of magnitude. Finally,
we show that for evidence grids, mutual information can be
implemented as a lookup table eliminating the complexity of
computing the reward. These techniques are also applicable
in static environments, and many of them (such as the e-
admissible heuristic) have not previously appeared in the
information theoretic path planning literature.

II. RELATED WORK

Probabilistic target search appears as early as 1956 [11].
Many variations of target search have been studied across
a variety of communities, and surveys can be found [12]-
[14]. We now discuss the subset of this previous work that
is closely related to the current paper. We assume that an
agent actively searches for targets until, possibly, a stopping
criteria is met. Therefore, our survey of previous work will
focus on problems requiring active search [15,16] (e.g., vs. the
alternative problem where searchers are expected to travel to
and then remain at locations well suited to static surveillance
[17].

When (only) a single target exists, a common approach is to
maintain a probability density function of the target’s location
within the search space that is refined analytically [5] or
numerically [18] with respect to new observations taken as the
searcher(s) move. This can be extended to the multi-target case
by tracking either a predefined number m of targets in parallel
[5,19]-[21], or using random finite sets to simultaneously
define the likelihood that there are 1,...,m targets [3,15].
An alternative (but not mutually exclusive) location-centric
approach involves dividing the search space into a finite
number of cells or grids, and then tracking the likelihood each
cell/grid contains a target [3,22]-[24] or tracking the number
of targets contained within each cell/grid [25,26]. Our work

is similar to the cell/grid method, except that we model the
world as a connected set of regions, and each region contains
multiple cells.

Another consideration is if target(s) are assumed stationary,
e.g., [3,4,18,24], or move according to a stochastic process
[16,19] or other dynamics [5]. In this work we assume that
targets are stationary.

Methods grounded in Bayesian inference have been widely
studied [20,21,23,27,28], and are useful when target motion
or sensor properties can be modeled probabilistically. Other
methods inspired by probabilistic ideas calculate a heuristic
value between 0 and 1 from the number of detections vs.
attempted measurements to provide an estimate of how likely
a cell is to contain a target [29]-[31].

If a cell/grid model is used such that the probability of target
existence within each cell is the desired result of a search, then
information theoretic methods (often grounded in Bayesian
inference [2,4,18,32]) provide a means to reason about what
parts of the search space are understood well or poorly, and
how searcher movement along a potential search plan is likely
to change the overall quantity of information we have about
the target(s) locations within the environment [18]. Our work
falls into this category.

The information theoretic benefits of visiting different lo-
cations have the property of submodularity (i.e., diminishing
returns), and calculating the information theoretically optimal
motion plan becomes intractable as the length of the plan
increases. Searcher(s) often select joint actions that maximize
expected information gain over a receding horizon to achieve
tractability [5,15,16,18,20,28,32]. Computational complexity
increases with horizon distance, but is often reduced in practice
by greedily following the maximum gradient of mutual infor-
mation [2]-[4]. Multiagent methods are exponentially complex
with respect to the number of robots, and necessarily use
shorter look-ahead distances as a result [2]-[4]. While our
work plans over a fixed horizon, we consider a much deeper
planning horizon than previous work. By performing branch
and bound over a graph of regions (themselves composed of
many cells) we are able to achieve much greater cell-wise
look-ahead. We consider only a single searcher.

A hierarchical search is considered in [3] and mentioned
as a possibility of future work in [4]. Both [3,4] envision the
hierarchy as a quad-tree like data structure such that cells/grids
are broken into multiple sub-grids based on a user defined
threshold on the information contained in the cell/grid or target
likelihood of existing within a cell. This contrasts with our
approach (in which the grid vs. region resolutions are defined
a priori and each region contains many cells), but we believe
it would be possible to combine all of these ideas, but doing
so is beyond the scope of the current paper.

In addition to work with moving targets [5,16,19], other
work considering environmental dynamics includes [4,30] and
focus on hostile environments that can destroy robots. These
methods assume multiple robots exist, and focus on reaction to
changing team size and accumulating knowledge about hazard
locations. In contrast, we are interested in environmental



connectivity that changes with time. The term “uncertain
environments” is used in [32] in the sense that the locations of
targets are not known a priori, although the same thing could
be said about most previous work. A time-varying information
objective was explored in [10], when using sampling based
motion planning for environmental information gathering.
Previous applications of branch and bound to the target
search problem include [9,19,33]. The method presented in
[19] considers the case of tracking a stochastically moving
target and attempts to maximize the expected number of
detections, while [33] considers a moving target but seeks to
maximize the probability of target detection subject to fuel
and risk constraints. In contrast to [19,33], we seek to maxi-
mize information regarding the location of multiple stationary
targets. The most closely related work to our own is arguably
[9] which uses branch and bound with Gaussian Processes
for informative path planning. A significant difference is that
the bounding heuristic used in [9] cannot account for multiple
coverings of the search space—something we explicitly allow.

III. PROBLEM FORMULATION AND APPROACH

The workspace of the robot W C R? contains all posi-
tions w = (x,y) at which a target may exist. The configu-
ration space C' is the product of W with time 7" and any
higher order spaces necessary to define robot trajectories,
C =W x W x ... xT. The robot starts at point cgpart € C.
A point in space time is denoted (w,t) € W x T'. A feasible
trajectory 7 is a curve through C' that starts at cgtap¢ and that
the robot is capable of following. A trajectory defined between
time 0 and time ¢ is denoted 7;. Let 7 = |J{7:} be the space
of all valid trajectories between time 0 and ¢.

Information related to target search is stored in an evidence
grid £ which covers the workspace at a user defined resolution
r. For notational convenience we assume r = 1 and evidence
grid cell g, represents the set [z,z+7) X [y,y + ) for
z,y e Nand 1 <z < zpax and 1 <y < Ymax, Where Tmax
and ymax depend on the problem being solved. As the robot
moves, the state of the evidence grid is updated as a function of
measurements that it takes at cells. We assume measurements
are taken at discrete times t = 0,1,2,.. ..

For each cell g € £ define X to be the hidden state of
whether or not the cell contains a target. X may be discrete
or continuous. Zj, € {0,1} is the kth sensor measurement in
g and Z.; is the collection of k£ sensor measurements. zy.5 is
an observed sequence of measurements (a realization of Z.x).
When it is necessary to denote the particular grid cell in which
sensor measurements are taken we shall use superscripts, e.g.,
z;}} is the observed sequence of measurements in g, ,. Each
cell in the evidence grid is assumed to be independent from
all other cells, that is X%/ | XV for i # x and j # y. For
all z,y, k we assume that X®¥ is independent of time and
thus Z;¥ and z]} are not affected by the time(s) at which
the measurements are taken. Given the forward sensor model
P(Zy, = 2| X), we compute the inverse sensor model, (1):

P(Zy = 21| X, z1.6—1) P(X|21.6-1)

P(X|z1.k) =
(X|z1:x) P(Zy;, = zi|21:6—-1)

(D

in which all sensor measurements are conditionally inde-
pendent. From this model it is possible to compute the
mutual information I(Z41;X|2z1.%). In practice, this can
be computed a priori for any process and sensor model,
and tabulated on the number of positive and negative sensor
measurements observed. This model can account for either
static (consider the occupancy grid model) or stationary targets
(target’s presence at any moment of time is the outcome of a
Bernoulli Process, but the target’s distribution is independent
of time). The outlined approach in this paper would need to be
modified for nonstationary targets (whose target distribution is
time dependent such as a Markov chain) or dynamic targets
(whose belief distribution may be in more than one cell).
We will assume the use of an occupancy grid model [34]
which has closed form solutions through judicious use of basic
properties from probability and information theory but use
of other process/sensor models lie beyond the scope of this
paper. Define submodular function I(Zj41.4+4; X|21:1) to be
the total mutual information gathered by ¢ future sensor obser-
vations. We note that in this approach, mutual information is
used to predict the total information gain of future trajectories
conditioned on any previous sensor measurements observed.

The sensor model also defines a trajectory footprint (or,
footprint) for a given trajectory:

Or = {UsyZy! ) 44 [T makes g observations at cell g, , }

where different sensors have different footprints (e.g., down-
ward facing camera vs. scanning LIDAR). &7 can be stored
as a 2D array the same size as the evidence grid by defining
® [z, y] = q. The cumulative mutual information collected by
time ¢ assuming the robot has followed 7; is given by the sum
of the mutual information of the future sensor measurements
and the hidden state conditioned on previously observed data
within each individual grid:

Yo HZp g X2
€D

R(Ty) =

z,y
2 iktq

The problem of informative path planning with time con-
straints is defined as: Find T;*, the trajectory of time duration
t that maximizes the cumulative mutual information in &;,

T, = arg max R(Ty). ()
TieT

When computing the lookup table for mutual information,
it holds that I(Zgy1:k+q;X|21.5) can be computed from
I1(Zk11; X|2z1.1;) using the chain rule for mutual information:

k+q
I Zisrnrg Xlzaa) = D (25 X|Zi1, Zica, -, Zii, 21)
i=k+1

Using the exchangability property we define Binomial Ran-
dom Variable M1, :) Z;:kﬂ Z; . Given zi.,, we can
assign n.1 = my = >, ; % and n.o = k —my.; to be the
number of positive and negative sensor readings, respectively.

k+q i—k

I(Ziyrkrgi Xlz1a) = Y Y P(Myyra = m)I(Z;; X|214)
i=k+1m=0



This results in O(q®) multiplications and O(g?) calls to
I(Z;; X|z), assuming such data is available efficiently.
However, storing these solutions into a 3D lookup table
I[n.o,n21,q] indexed by unsigned integers offers O(1) lookup
speeds in random access memory and requires little memory
(a 20x20x10 array of double precision floats takes 32 kilobytes
of RAM).

A. Trajectory Equivalence

The computation time required to solve (2) can be signif-
icantly decreased vs. a naive search over all 7; € % as a
consequence of our assumption that X*-¥ is independent of
time for all x, y. Consequently, the order in which observations
are recorded in ®7; does not affect the information gathered.
Two trajectories are in the same equivalence class if their
footprints and end configurations are equal. Further, if the
set of future feasible trajectories is uniquely determined by
the current configuration, then two trajectories belonging to
the same equivalence class generate the same future feasible
trajectories. This implies that we may prune a node in the
search tree if it is found to be equivalent to another node in
the queue, meaning that we only need to store one trajectory
per equivalence class without affecting the quality of the
final solution. In practice, this is accomplished by hashing all
(®7;,c) that we encounter to see if a new node generates a
new equivalence class.

B. Search over regions instead of grids

Under special circumstances that are often reasonable in
practice, the depth of the search for t.,,x can be decreased
by orders of magnitude by searching over a hierarchical
representation of W (e.g. Voronoi partition, visibility region,
etc.). This is possible whenever the workspace can be divided
into a set of disjoint regions R where each region contains a
mutually exclusive contiguous subset of evidence grid cells,
and each grid cell appears in exactly one region. See Fig. 1(b)
for a set of regions with an example evidence grid.

Different trajectories are generated by selecting different
actions, e.g. by either searching a given region, or by traversing
between connected regions. The edges connecting regions may
also be time dependent, modeling changing environmental
connectivity such as no-fly zones, etc. We also assume that
all trajectories start and stop at one of the nodes in the graph.

C. e-admissible Branch and Bound Algorithm

We extend best first search branch and bound using a
priority queue to create e-admissible branch and bound. For
general branch and bound for maximization problems (similar
formulations exist for minimization problems), we want to
maximize function f(z) for z € X for solution space X
with admissible heuristic g(N) for arbitrary set N C X such
that g(N) > max,en f(x), enabling branch and bound to
reason about subsets of the solution space. The reward for
the best known feasible solution is stored in the quantity
B, initialized to —oo or heuristic solution By. Branching
the node N generates multiple subspaces N; C N. The

branching function branch(N) will eventually generate all
feasible solutions {z} € X. Bounding determines if any
solution in the subset defined by N can potentially beat the
current best known solution, if g(N) > B. If g(N) < B, the
optimal solution cannot be in /N so the algorithm ignores the
subset IV for the rest of the search (it is said that branch and
bound has fathomed N in this case). If a node has not been
fathomed, the priority of the node, P(N), is evaluated and
N is placed on the priority queue. If N = {«} where z is a
complete feasible solution, then B «+ f(z) if f(z) > B. The
algorithm terminates when the priority queue is empty.
Theorem 1: branch and bound is complete when X is finite
and is guaranteed to find the optimal solution.

Proof: Proof for an equivalent formulation can be found in
Edelkamp and Shroedl [35]. O

For multipass target search, branch and bound is maximiz-
ing f = R defined in (2) with X = .7;. Each node or subset
N in the search tree corresponds to a subset of solutions and
is defined by N = (¢, ®7;). Branching of a node is done
by using the motion model to generate children nodes for
all available actions. Section III-D will define an admissible
heuristic for use in branch and bound.

Suppose that instead of using an admissible heuristic we
wish to speed up the search by more aggressively fathom-
ing the search space. Define e-admissible bounding heuristic
g(N) > maxgen f(x) — e which underestimates the reward
f(x) by at most e. This is closely related to Harris’s e-
admissibility criterion for bandwidth search [36]. e-admissible
branch and bound is therefore defined as branch and bound
that uses an e-admissible heuristic for bounding.

Theorem 2: Using e-admissible heuristic g for bounding
guarantees that the solution will be at most ¢ less than the
optimal solution.

Proof: The only way this algorithm will not find the optimal
solution x* is if any subset IN;, where z* € Nj, is pruned.
Suppose I is a feasible solution and f(z) = B. Given that
N; is pruned, §(N;) < B but §g(N;) > f(«*) — e. Further
manipulation yields € > f(z*) — f(Z) > 0. O

D. Iterative Greedy Heuristic for Bounding

The major challenge for the bounding heuristic is to reason
over potential future reward any partial solution can gather.
A common approach to generate a heuristic is to relax the
trajectory feasibility requirements by assuming that all actions
are feasible at any given time, while assuming that the actions
do not interact with each other (e.g. footprints do not overlap).
We would like to maximize reward gathered for an action
sequence of fixed duration, with any combination of actions
feasible in any order. Suppose there are L actions to be made,
and N actions available. Decision variable a; € {0,1,..., L}
with ¢ € 1,..., N is the number of times the ith action is
taken, with decision vector a = (a1, asg, . . . ay ). The reward is
partitioned off in the sense that R(a) = vazl R;(a;). Define
AR;(a+ 1) = Ri(a + 1) — R;(a) > 0. This is equivalent
to saying that selecting action 4 the (a; + 1)th time gives the
agent a reward of AR;(a;+1). R; is monotone increasing and



concave (R;(a+1) > R;(a) but AR;(a+2) < AR;(a+1)).
The goal is to maximize the objective function:

N N
mngRi(ai) s.t. Zwiai <Landa; >a; >0 3)
i=1 i=1

where w; = 1 implies that all actions are of unit duration o
encodes subproblems for branch and bound by determining
which actions have already been selected. Looking at this as
a sequence of L decisions with w; = 1, greedily selecting
the next action will yield the optimal solution by construc-
tion. For example, if one were to sort all actions by their
incremental reward AR;(a;), picking the L largest rewards
would maximize the objective function. When sorted like this,
AR;(a;) is always selected before AR;(a; + 1) by definition
so a valid sequence of actions is always generated (pick action
1 the first time, pick action j the first time, then pick action
1 a second time, etc.). This relaxation of the original path
planning problem generates an admissible heuristic satisfying
the requirements for Theorem 1.

E. Priority Heuristic

We wish to discount future expected reward since future
rewards are overestimated. For priority p(N) for node N,
current reward R(N) heuristic g(N), and discount factor
a € [0, 1], define the priority of a node to be:

P(N) = R(N) + a(g(N) — R(N)) )

FE. Benchmarks: Greedy Planner and Zelinsky’s Algorithm

We contrast our approach to two alternate approaches, using
an iterative greedy heuristic solver and Zelinsky’s algorithm
when applicable. For the greedy heuristic solver, we use the
same environment and motion model that’s used for branch
and bound to generate candidate trajectories. However, the al-
gorithm instead greedily maximizes total information gathered
per unit of time for the next action. When the greedy heuristic
is selecting the next best action, it is possible (but unlikely
in natural environments) that two or more actions result in
the same (maximal) amount of information gathered per unit
of time. Such ties are resolved by selecting the action that
acquires more total information. This is done iteratively until
the remaining time budget expires.

Zelinsky’s algorithm [37] is a value function based uniform
coverage planning algorithm that plans directly on the 8-
connected evidence grid. It may occasionally back itself into
a corner, in which case we use Dijkstra’s algorithm to plan a
route to the nearest unvisited cell, and then continue running
Zelinsky’s algorithm. We note that Zelinsky’s algorithm does
not extend to space time and so cannot be applied to changing
environments

IV. EXPERIMENTS

For all experiments, the evidence grid is a 200x100 grid un-
less mentioned otherwise. We use the standard occupancy grid
sensor model [34] where X =0 or X = 1. P(Z|X) is fully
characterized by P(Z = 1|X = 1) = pq where pg = 0.85 is
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(a) sensor model used
in the simulations

(b) Example environment denoting regions,
the connectivity graph and a portion of the
evidence grid.

Fig. 2. 2(a): Sensor model observes a single cell in the occupancy grid.
2(b): example 7 region environment showing regions (black lines), their nodes
(black circles) and edges (gray dashed lines) overlaying the evidence grid.
Example portion of the evidence grid is shown in the bottom left region.

the probability of detection and P(Z = 1|X = 0) = py where
pr = 0.15 is the false positive rate. We assume that the
quadrotor only senses the cell it is currently in, see Fig. 2(a).

We procedurally generate environments randomly by creat-
ing rectangular regions that produce a tiling on the evidence
grid. We randomly remove a fixed set of individual regions
while maintaining graph connectivity. Environments will con-
sist of either 12, 24, or 50 regions within the evidence grid. The
12 region environment started with 4x4 regions, while the 24
and 50 region environments started out with 8x4 and 10x10
regions respectively. Note that in this case, the 12 and 24
region environments have 15k cells accessible for observation,
while in the 50 region case there are 10k accessible cells.
The agent has the following actions: (1) traverse between
connected regions, e.g. move left, down; (2) exhaustively
search a region, or search the region until the time horizon
expires. Each action has a given time duration and a trajectory
footprint where one unit of time is required to traverse and
sense one cell, and starts and ends at one of the graph nodes.

While our sensor model measures mutual information in
bits, each environment doesn’t necessarily contain the same
amount of information. For each algorithm we will denote
information gathered as the ratio of how much information
the planned path will gather divided by the heuristic total in-
formation that could be potentially gathered (ignoring traversal
times or motion constraints). Note that any ratio > 100% is
not possible.

For our application, we use the e-admissible heuristic
g(x) = g(x) — e where e =nB, where 7 is the minimum
required performance improvement (e.g. n = 0.5% requires
that new solutions are half a percent better than the current
best solution). B is initialized to —oo as we do not start with
a heuristic solution.

For each experiment Ni.;q;s = 40 different environments
using the randomized environment generator were tested.
Simulations were run on a Core i7-6920HQ with a 2.9 GHz
clock with 64 GB RAM running 64 bit Ubuntu 14.04 LTS.
The proposed branch and bound algorithm and the greedy
algorithm were developed in Python, using NumPy for array
operations and networkx for graph operations. Zelinsky’s
algorithm was implemented in the programming language
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Fig. 3. Results for Experiment 1. (a,n) = (0.9, 0.5) reduces the number of
nodes expanded while not affecting solution quality. Green/solid is a = 0.9,
blue/dashed is o = 0.7 and black/dotted is o« = 0.5.

Julia. We ran the following experiments to illustrate different
properties of the proposed algorithm:

o Experiment 1: Sweep «, n on the 12 region environment
to determine best parameters, and illustrate that the choice
of priority heuristic and that e-admissible bounding im-
prove the performance of the planner.

o Experiment 2: Sweep the size of the evidence grid to
show (in-)sensitivity to size of evidence grid

o Experiment 3: For set values of «, 7, benchmark branch
and bound on 12, 24, 50 region environments to
greedy approach and Zelinsky’s algorithm in uniform and
nonuniform environments, and for static and time varying
environments. This also shows how the complexity of the
algorithm increases for more complex environments.

For uniform environments, all cells are initialized with the
most uninformative prior of P(X = 1) = 6, = 0.5. For
the nonuniform environment, we will suppose that half of
the regions (selected at random) have been visited twice by
prior sensor measurements. Inspection of the mutual informa-
tion look up table suggests that in this case, a nonuniform
covering will gather more information. For the time varying
environment in Experiment 3, we select 4 regions that are
critical locations (their removal breaks the connectivity of the
environment) at random and turn them into trap doors. All
edges leading into or out of the region are disabled at regular
time intervals. Each on/off cycle lasts 20% of the mission
duration.

A. Experiment 1

We set a € {0.5,0.7,0.9} and n € {0.0,0.5,1.0,2.0, 3.0}
in a 12 region environment. For these trials, the planner
continues to plan until the priority queue is empty. Fig. 3(a)
shows what percentage of information the planner is able
to collect for given parameter set (c,7). We see that for
a > 0.7 collected information is insensitive to choice of 7
(this stems from the fact that for higher values of «, the
first discovered solution is usually the best). In Fig 3(b) we
observe how tweaking the heuristic used for e-admissible
bounding dramatically reduces the number of nodes expanded.
For example setting (a = 0.9,7 = 0.5) only explores 0.6%

TABLE I
UNIFORM STATIC ENVIRONMENTS, MEAN OF 40 TRIALS

Regions Branch and Bound
info  time
12 99.2% £ 0.1% 1.15 £ 04
24 99.2% £ 0.1% 6.5 £ 6.9
50 (83% succ.) | 99.2% £ 0.1% 128 + 135
Regions Greedy Zelinsky
info  time info  time
12 2% + 11% 0.2 £ 0.03 99.7% £ 0.08% < 0.1*
24 84% + 9% 0.3 £ 0.02 99.5% £ 0.1% < 0.1*
50 52% + 19%  0.94 &+ 0.18 78% + 0.1% < 0.1*

of the number of nodes explored when compared with setting
(e =0.9,7=0.0).

B. Experiment 2

The results of Experiment 2 show that the time to the first
solution is linear with the number of cells in the evidence grid
(Fig. 4(b)) without affecting solution quality (Fig. 4(a)). This
is due to the hierarchical nature of the formulation instead
of planning directly in the evidence grid (which would be
exponential in the number of grid cells). Time to algorithm
termination (Fig. 4(c)) is not linear with the number of cells
in part due to the effects of introducing caching in the
heuristic. Further, the quality of the heuristic improves in
larger environments since traversal times become insignificant
with larger regions with longer search times.

C. Experiment 3

Fixing o« = 0.8 and = 0.5%, we will benchmark the
proposed branch and bound algorithm to other algorithms
in the 12, 24, and 50 region environments. Since we are
pushing the proposed algorithm to the limits, branch and
bound will not always find a solution for the more difficult
environments. When branch and bound does not always find
a solution, we will mention the success rate and provide
statistics on the successful trials. We anticipate that future
improvements in heuristic design will dramatically improve
algorithm performance for the more difficult environments.
Branch and bound will run until the first solution is found,
or until 10,000 or more iterations have completed. We would
like to note that Zelinsky’s algorithm was implemented in the
programming language Julia, which has speeds comparable to
C and is much faster than Python.

Tables I, II and III summarize the statistics for the time to
first solution in seconds (time), percentage of total available
information gathered (info), and the total number of nodes
explored (nodes), displaying averages and standard deviations.

1) Uniform Environment: Figure 5 shows example foot-
prints that closely resemble median performance of each of
the algorithms for the uniform environment. The footprints
are the same size as the evidence grid, where white cells
are unexplored by the trajectory, blue cells as being visited
regions (darker cells have been visited more often), and black
regions denote obstacles. Table I summarizes the statistics for
the uniform, static environments.
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2) Nonuniform environment: We observe that branch and
bound is able to handle the nonuniform environments as
equally well as the uniform environments, while Zelinsky’s
algorithm suffers. Results are summarized in Table II.

3) Time varying environment: Experimental results in Table
III illustrate that for branch and bound, solving the time vary-
ing example is significantly harder than the static environment.
For example, consider that branch and bound is able to solve

TABLE II
NONUNIFORM STATIC ENVIRONMENTS, MEAN OF 40 TRIALS.
Regions Branch and Bound
info  time
12 99.3% + 02% 1.0 £ 0.5
24 99.3% + 0.1% 9.6 = 16
50 (80% succ.) | 99.3% + 0.1% 79 + 80
Regions Greedy Zelinsky
info  time info  time
12 70% + 15% 0.19 £ 0.02 | 90% + 1.6% < 0.1*
24 84% +94% 0324+ 003 | 90% + 1.2% < 0.1*
50 72% + 13% 0.72 £0.13 | 93% + 04% < 0.1*

the static 24 region environment in 6.5 seconds on average,
while taking over 58 seconds in the time varying example.
More importantly, we note that there is a decrease in the
success rate in the large environments We show that these
success rates are sensitive to the heuristics used. For example,
changing « from 0.8 to 0.2 results in dramatic improvements
in success rate by encouraging depth-first like behavior, but at
the expected cost of reducing solution quality.

TABLE III
UNIFORM TIME VARYING ENVIRONMENT, MEAN OF 40 TRIALS.

Regions « Branch and Bound
info  time
12 0.8 9%% £ 1.7% 1.6 £ 1.5
24 0.8 (82.5% succ.) | 97% + 1.0% 58 £ 104
50 0.8 (12.5% succ.) | 98% £ 0.6% 127 + 136
50 0.2 (70% succ.) 76% £+ 03% 73 £ 66
Regions Greedy Zelinsky
info  time info  time
12 73% £+ 14% 0.15 £ 0.01 | NJ/A N/A
24 76% £+ 16% 0.3 + 0.03 N/A  N/A
50 42% +£02 % 083 £0.2 N/A  N/A

V. CONCLUSION

Since branch and bound reasons over all possible solutions,
it discovers the highest reward path but takes the longest
to compute. The e-admissible heuristic shows that having
a tighter bound dramatically reduces the number of nodes
expanded later in the search. Zelinsky’s algorithm is effective
in uniform environments as expected but suffers in nonuniform
environments. It is interesting to note that the greedy algorithm
performs similarly in uniform, nonuniform and time varying



environments. However, the greedy algorithm is not effective
enough to provide an initial heuristic solution for branch and
bound as the solutions it finds are too low quality to prune
any nodes during the search.

VI. FUTURE WORK

Designing the correct heuristics is essential for comput-
ing solutions quickly for target search and will be a focus
for future work. We also plan to conduct experiments with
MAVs searching for targets in a changing environment, which
will require the generation of dynamically feasible motion
primitives and coverage plans in a time-varying environment,
and planning around dynamic obstacles that were not in
the original plan. Finally, we plan to extend this work to
a multiagent scenario by having multiple MAVs perform a
coordinated search effort while sharing the information that
they gather and the trajectories they plan to take in the future.
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