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Sampling-based Volumetric Methods for Optimal Feedback Planning Motivation

General Idea
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Algorithm 1 ACIDIC

Input: Sets Xgoal ⊆ Xfree ⊆ X
1: loop
2: xnew ← SamplePoint(X)
3: UpdateDelaunay(xnew)
4: for all τnew do
5: CollisionCheck(τnew)
6: ReplanFMM(xnew)
7: yield feedback π(x)

Random and pseudo-random sampling

Volumetric free-space approximation

Feedback policy computations

Asymptotic convergence

Motivation

Path-centric algorithms
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Pros

We are using graphs for planning algorithms
because many efficient graph libraries are
available

Cons

The main problem with graphs is in artificial
restriction of robot movements on a set of zero
measure

Policy-centric algorithms
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Pros

A feedback policy stabilizes robot motions
towards the goal without using path-following
controller middleware

Cons

Numerical methods for feedback function
computations are currently unavailable, but we
are determined to eliminate this problem
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Sampling-based Volumetric Methods for Optimal Feedback Planning Sampling Strategies

General Idea
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Algorithm 1 ACIDIC

Input: Sets Xgoal ⊆ Xfree ⊆ X
1: loop
2: xnew ← SamplePoint(X)
3: UpdateDelaunay(xnew)
4: for all τnew do
5: CollisionCheck(τnew)
6: ReplanFMM(xnew)
7: yield feedback π(x)

Random and pseudo-random sampling

Volumetric free-space approximation

Feedback policy computations

Asymptotic convergence

Sampling Strategies

Random Sampling

Random sampling avoids unfortunate subspace
alignment

Random sampling does not avoid the curse of
dimensionality

Finding narrow corridors using random sampling is as
hard as using regular grids [LaValle, Branicky, Lindemann, 2004]

Delaunay Refinement [Ruppert, 1995; Shewchuk, 2010]

Insert next sample at the center of the largest
circumsphere

Optimal dispersion convergence

Randomly seeded deterministic sampling algorithm

Sampling bias towards regions of interest
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Sampling-based Volumetric Methods for Optimal Feedback Planning Incremental Delaunay Triangulation

General Idea

 

 

0

50

100

150

200

250

 

 

0

50

100

150

200

250

 

 

0

50

100

150

200

250

Algorithm 1 ACIDIC

Input: Sets Xgoal ⊆ Xfree ⊆ X
1: loop
2: xnew ← SamplePoint(X)
3: UpdateDelaunay(xnew)
4: for all τnew do
5: CollisionCheck(τnew)
6: ReplanFMM(xnew)
7: yield feedback π(x)

Random and pseudo-random sampling

Volumetric free-space approximation

Feedback policy computations

Asymptotic convergence

Incremental Delaunay Triangulation

Delaunay Triangulation

Delaunay triangulation of a sample set is a
geometric simplicial complex such that the
interior of all simplex circumspheres do not
contain any sampled points

The complexity of Delaunay triangulation is
O(N) for N samples in the general position,
regardless of the dimension number d [Miles, 1974]

Incremental Delaunay Triangulation

Start with the initial Delaunay triangulation

Newly inserted sample always violates
empty-circumsphere property

“Rewire” local simplices to enforce this property

Computational complexity O(log(N)) (N is the
size of the initial sample set)
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Sampling-based Volumetric Methods for Optimal Feedback Planning Repairing Fast Marching Method

General Idea
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Algorithm 1 ACIDIC

Input: Sets Xgoal ⊆ Xfree ⊆ X
1: loop
2: xnew ← SamplePoint(X)
3: UpdateDelaunay(xnew)
4: for all τnew do
5: CollisionCheck(τnew)
6: ReplanFMM(xnew)
7: yield feedback π(x)

Random and pseudo-random sampling

Volumetric free-space approximation

Feedback policy computations

Asymptotic convergence

Repairing Fast Marching Method

Dijkstra’s Algorithm
[Dijkstra, 1959]

V ∗

Vj

1: Initialize Q
2: while Q is not empty do
3: Pop j with least Vj from Q
4: for all i ∈ N (j) do
5: V ∗ ← ‖xi − xj‖+ Vj
6: if V ∗ < Vi then
7: Update Vi

Is it difficult?

Change one line in your favorite graph-search
algorithm: Dijkstra, A∗, D∗, LPA∗, ARA∗, etc∗

Fast Marching Method
[Sethian, 1999]

V ∗
Vj′′

Vj′

1: Initialize Q
2: while Q is not empty do
3: Pop j with least Vj from Q
4: for all i ∈ T ∈ N (j) do
5: V ∗ ← minloc(i, T, V )
6: if V ∗ < Vi then
7: Update Vi

What is necessary?

Use your favorite interpolation method to
propagate cost-to-go function values
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Sampling-based Volumetric Methods for Optimal Feedback Planning Convergence Rate and Computational Complexity

General Idea
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Algorithm 1 ACIDIC

Input: Sets Xgoal ⊆ Xfree ⊆ X
1: loop
2: xnew ← SamplePoint(X)
3: UpdateDelaunay(xnew)
4: for all τnew do
5: CollisionCheck(τnew)
6: ReplanFMM(xnew)
7: yield feedback π(x)

Random and pseudo-random sampling

Volumetric free-space approximation

Feedback policy computations

Asymptotic convergence

Convergence Rate and Computational Complexity

Convergence Rate

Deterministic sampling E ∼ O
(
( 1
N
)
1
d
)

Random sampling E ∼ O
(
( logN

N
)
1
d
)

Delaunay refinement E ∼ O
(
( 1
N
)
1
d
)

Computational Complexity per Sample

Sampling O
(
1
)

Delaunay refinement O
(
log(N)

)
Sample localization O

(
log(N)

)
Simplex rewiring O

(
1
)

Collision check O
(
1
)

Repairing FMM (amortized) O
(
log(N)

)
Running Time Complexity

per N samples O
(
N log(N)

)
per digit of accuracy O

(
E−d(1+δ)

)
∀δ > 0
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Sampling-based Volumetric Methods for Optimal Feedback Planning Results

General Idea
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Algorithm 1 ACIDIC

Input: Sets Xgoal ⊆ Xfree ⊆ X
1: loop
2: xnew ← SamplePoint(X)
3: UpdateDelaunay(xnew)
4: for all τnew do
5: CollisionCheck(τnew)
6: ReplanFMM(xnew)
7: yield feedback π(x)

Random and pseudo-random sampling

Volumetric free-space approximation

Feedback policy computations

Asymptotic convergence

Simulation Results

http://tinyurl.com/qjnazvr
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