Journal name
0=

RRT*: Asymptotically Optimal ohe Auors 201

Reprints and permission:

Single-Query Sampling-Based Motion sagepubco.ujournalsPermissions nay

DOI:10.1177/1081286510367554

http://mms.sagepub.com

Planning with Quick Replanning

Michael Otte* and Emilio Frazzoli
Massachusetts Institute of Technology, Cambridge MA 02139, USA

Abstract

Dynamic environments have obstacles that unpredictably appear, disappear, or move. We present the first sampling-based
replanning algorithm that is asymptotically optimal and single-query (designed for situation in which a priori offline
computation is unavailable). Our algorithm, RRTX, refines and repairs the same search-graph over the entire duration
of navigation (in contrast to previous single-query replanning algorithms that prune and then regrow some or all of the
search-tree). Whenever obstacles change and/or the robot moves, a graph rewiring cascade quickly remodels the existing
search-graph and repairs its shortest-path-to-goal sub-tree to reflect the new information. Both graph and tree are built
directly in the robot’s state space; thus, the resulting plan(s) respect the kinematics of the robot and continue to improve
during navigation. RRTX is probabilistically complete and makes no distinction between local and global planning, yet it
reacts quickly enough for real-time high-speed navigation though unpredictably changing environments. Low information
transfer time is essential for enabling RRTX to react quickly in dynamic environments; we prove that the information
transfer time required to inform a graph of size n about an e-cost decrease is O (nlogn) for RRTX—faster than other
current asymptotically optimal single-query algorithms (we prove RRT* is) (n(%)l/ b) and RRT# is w (nlog2 n)).
In static environments RRTX has the same amortized runtime as RRT and RRT*, © (logn), and is faster than RRT*,
w (log2 n) In order to achieve O (logn) iteration time, each node maintains a set of O (logn) expected neighbors, and
the search-graph maintains e-consistency for a predefined e. Experiments and Simulations confirm our theoretical analysis
and demonstrate that RRTX is useful in both static and dynamic environments.

Keywords

real-time, asymptotically optimal, graph consistency, motion planning, replanning, dynamic environments, shortest-path

1. Introduction

Now, more than ever before, autonomous robots are affecting the lives of the average citizen; yet, most current mainstream
deployments are also invisible to the mainstream population. Large scale deployments are limited to highly controlled

or civilian-free settings such as factories, warehouses, crop fields, space, disaster clean-up, or the battlefield. However,

* Corresponding author; e-mail: ottemw @mit.edu

2 Journal name ()

Fig. 1. Holonomic robot using RRT* to move from start to goal (white square) while repairing its shortest-path tree (light-gray) vs.
obstacle changes. Color/grayscale is cost-to-goal. Planned and executed paths are white and red/dark gray. Obstacles are black with
white outlines. Time (in seconds) appears above each sub-figure. See http://tinyurl.com/153gzgd for videos of this and other
vehicles.

multiple industrial efforts are underway to develop self-driving cars, package delivery aircraft, and countless other every-
day applications. This new breed of consumer robotics will interact directly with average humans; and therefore, must
be designed to thrive in the relatively unpredictable environments in which people live, work, and play. Despite many
recent advances, there is still a need for algorithms that enable efficient kinematic real-time autonomous navigation through
dynamic environments.

We present RRTX, the first sampling-based replanning algorithm that is both asymptotically optimal and designed
for situation in which a priori offline computation is unavailable. RRTX enables real-time kinodynamic navigation in
dynamic environments, i.e., in environments with obstacles that unpredictably appear, move, and vanish. In particular,
RRTX calculates an initial plan, then continually refines it toward the optimal solution during navigation, while also
repairing it on-the-fly whenever changes to the obstacle set are detected. The plan is stored in a graph and its asymptotically
optimal shortest-path sub-tree. An important quality of the algorithm is that it uses the same graph/tree even when obstacles
change—quickly remodeling and repairing it instead of pruning disconnected branches away (see Figure 1). Both graph
and sub-tree exist in the robot’s state space, and the tree is rooted at the goal state (allowing it to remain valid as the robot’s
state changes during navigation). Whenever obstacle changes are detected, e.g., via the robot’s sensors, rewiring operations
cascade down the affected branches of the tree repairing the graph and remodeling the shortest-path tree.

Although RRTX is designed for dynamic environments, it is also competitive in static environments—where it is
asymptotically optimal and has an expected amortized per iteration runtime of O (log n) for graphs with n nodes. This is
similar to RRT and RRT* © (log n) and faster than RRT* © (log® n).

RRTX 3

0 o o o
° L °
Y [)
[]
v v
L4 ° °
o @ ° \ °
PRI P O - O
to root

(A) v (light blue) initially achieves the shortest (B) v stores edges to/from its neighbors (light (C) v; is inserted with parent v. v; stores edges
cost-to-goal through neighbor v;, so v; is the blue lines) and its neighbors store edges to/fromitsneighbors (redlines) and its neighbors store
initial parent of v. to/from v (black lines). edges to/from v; (new black/blue lines).

o) o o o
o) o o
[} [} e
8 g
o/ “ o
°
Y 4 5 ¢ ® © © -
“ o © 0 o o © 0

(D) As additional nodes are inserted
(gray/white), edges to/from v and v; are
also stored at v, v; and the neighbors (new
light blue, red, black lines, respectively).

(E,F) As the hyperballs shrink, the edges are adjusted. Nodes remember their original neighbors, as
well as all neighbors within the current hyperball centered at themselves. Edges to/from parents are
kept as long as the parent relationship exists.

Fig. 2. A-F show the evolution of edges between v (light blue) and v; (red) and neighbors inserted before (black) or after (gray).
Non-neighbors are white.

The expected O (logn) time is achieved, despite rewiring cascades, by using two new graph rewiring strategies: (1)
Rewiring cascades are aborted once the graph becomes e-consistent!, for a predefined ¢ > 0. (2) Graph connectivity
information is maintained in local neighbor sets stored at each node, and the usual edge symmetry is allowed to be broken,
i.e., the directed edge (u,w) will eventually be forgotten by u but not by w or vice versa (See Figure 2). In particular,
node v always remembers the original neighbors that were calculated upon its insertion into the search-graph. However,
each of those original neighbors will forget its connection to v once it is no longer within an RRT*-like shrinking D-ball
centered at v (with the exception that connections within the shortest-path subtree are also remembered). This guarantees:
(A) each node maintains expected O (log) neighbors, (B) the RRT* solution is always a realizable sub-graph of the RRTX
graph—providing an upper-bound on path length, (C) all “edges” are remembered by at least one node. Although (1) and (2)
have obvious side-effects?, they significantly decrease reaction time (i.e, iteration time vs. RRT* and cost propagation time
vs. RRT#*) without hindering asymptotic convergence to the optimal solution. Indeed, reaction time is the most important
metric for a replanner in dynamic environments.

A YouTube play-list of RRTX moviesathttp: //tinyurl.com/153gzgdshows RRTX solving a variety of motion
problems in different spaces (Otte, 2014).

The rest of this paper is organized as follows: Section 2 surveys related work. Notation, assumptions, and the “replanning”
problem statement appear in Section 3. The RRTX algorithm is presented in Section 4, and its theoretical analysis in Section 5.

Simulations of RRTX in dynamic environments and Experiments comparing RRTX to RRT* and RRT* in static environments

I«c_consistency” means that the cost-to-goal stored at each node is within € of its look-ahead cost-to-goal, where the latter is the minimum sum of

distance-to-neighbor plus neighbor’s cost-to-goal.
2(1) allows graph inconsistency. (2) may delay the practical realization of some paths.

4 Journal name ()

appear in Section 6. Sections 7 and 8 contain a discussion of results and conclusions, respectively. Minor subroutines appear

in Appendix A, while additional background information regarding RRT* and RRT# appears in Appendix B.

2. Related Work

RRTX reflects a convergence of ideas from sampling-based motion planning (i.e., control theory) and discrete graph
replanning (i.e., artificial intelligence). RRTX differs from previous work in that it is the first asymptotically optimal®

single-query* sampling-based motion replanning® algorithm.

2.1. Related work on feasible sampling-based replanning

Replanning in the context of feasible sampling-based motion planning has undergone a number of incarnations for over a
decade. ERRT (Bruce and Veloso, 2002) caches waypoints from early plans, and then regrows the search tree from scratch
whenever the environment changes. The cached waypoints are used to bias the direction of tree growth during replanning.
DRRT (Ferguson et al., 2006) plans from the goal to the start (like RRTX) in order to reuse the same search tree after an
environment change. Branches that have been detached by obstacles are completely pruned and deleted (unlike RRTX),
and new sampling is biased toward the affected regions in order to help grow new branches around the obstacles. MP-RRT
(Zucker et al., 2007) retains disconnected branches and actively attempts to reconnect them to the rooted tree. LRF (Gayle
et al., 2007) additionally builds trees to multiple goals, retains disconnected branches like MP-RRT, and may merge trees
or reconnect branches. GRIP (Bekris and Kavraki, 2007) prunes disconnected branches and then bias new growth toward
old locations using heuristics in the sampling function. ATS+EB (Hauser, 2012) simultaneously plans vs. two different
objective functions (a safety strategy that we discuss in more detail in Section 2.5).

ERRT, MP-RRT, LRF, GRIP, and ATS+EB all use forward search that grows the search tree from the start to the goal.
This design choice that is arguably a retrogression from DRRT, given that significant machinery is required to continually
update the root of the tree to respect the robot’s location as the robot moves. RET (Martin et al., 2007) uses a bi-directional
planner (which also requires that the forward tree root be updated vs. a moving robot location) and an offline phase to
calculate additional waypoints for sampling bias during replanning.

The main difference between RRT* and these algorithms is that RRTX is designed for asymptotically optimal replanning
while they are designed for feasible replanning. In particular, although excess computation can sometimes be used to improve
path quality (e.g., GRIP), none of the aforementioned algorithms have theoretical guarantees regarding path optimally.
Another significant difference is that these algorithms must rely on new samples to regrow or reconnect portions of the
search tree that have been disconnected by obstacles. In contrast, RRTX uses a rewiring cascade to immediately remodel
the tree around the obstacles using existing nodes. With the exception of DRRT (and RRTX), all of the aforementioned
algorithms plan from start to goal. Replanning, arguably, should be done from goal to start because (1) this allows the same
tree and root to be used for all replans, and (2), in practice, robot sensors will detect changes near the leaves of the tree
instead of the root (thus any rewiring/pruning/regrowing of a node and its descendants will affect a significantly smaller

portion of the tree).

3 Asymptotically optimal algorithms have the property that their solution to a problem approaches the optimal value (e.g., minimum path length) in
the limit as the number of search iterations approaches infinity.

4Single-query algorithms assume that only a single problem will be solved and make no distinction between precomputation and computation. In
contrast, multi-query algorithms assume that a series of problems will be solved in the same state space and with the same obstacle configuration (but
with different start and/or goal states), thus justifying the use of significant offline precomputation.

SReplanning algorithms find a sequence of solutions“on-the-fly” vs. an evolving obstacle configuration and start state.

RRTX 5

2.2. Related work on discrete graph replanning

D* (Stentz, 1995), Lifelong-A* (Koenig et al., 2004), and D*-Lite (Koenig et al., 2002) are discrete graph replanning
algorithms designed to repair an A*-like solution after edge weights have changed. Equivalence of “no edge exists” and
“an infinite cost edge” allows graph connectivity changes, in general. These early algorithms traditionally plan/replan over
a grid embedded in the robot’s work-space, and thus are potentially impossible to follow given its kinematics. More recent
work addresses this deficiency by using precomputed lattice graphs composed of kinodynamically feasible edges projected
into the workspace from the robot’s state space. Likhachev and Ferguson (2009) use this technique with AD* (other methods
also use this idea in static environments (Pivtoraiko et al., 2009; Frazzoli et al., 2005; Kushleyev and Likhachev, 2009).

These ideas are resolution optimal (or near-optimal in the case of AD*) and complete with respect to the particular lattice
used; however, they almost surely find paths that are suboptimal with respect to the robot and environment. The construction
of a kinodynamically feasible lattice graph requires significant offline computation. While this is required only once per
robot (if the user is satisfied with the level of resolution completeness/optimality), increasing completeness/optimality
requires recomputing the lattice. In contrast, RRTX refines an asymptotically dense search-graph directly in the robot’s
state-space, and finds paths that are asymptotically optimal and probabilistically complete with respect to the robot and
environment. RRTX also does not require any offline computation.

2.3. Related work on asymptotically optimal single-query planning

RRT* (Karaman and Frazzoli, 2011) is the first asymptotically optimal single-Query sampling-based motion planning
algorithm. It introduces the idea that asymptotic optimality can be guaranteed if new nodes, upon insertion, are allowed
to “rewire” graph edges within their local neighborhood. They prove that the size of this neighborhood may shrink as a
function of graph size without affecting asymptotically optimality or probabilistic completeness. For convenience, a more
in-depth description of RRT* appears in Appendix B.

Any-Time SPRT (Otte, 2011) uses node-insertion rewiring and random rewiring to achieve asymptotic optimality, and
maintains graph consistency by propagating decreasing cost-to-goal information through the graph using brute-force. RRT*
(Arslan and Tsiotras, 2013) uses a more efficient rewiring cascade that both propagate decreasing cost-to-goal information
through the graph and also rewires within local neighborhoods when even lower cost-to-goal values are possible. A more
in-depth description of RRT* also appears in Appendix B for convenience. LBT-RRT (Salzman and Halperin, 2014) is
designed for static environments and maintains a “lower-bound” graph that returns asymptotically 1 + € “near-optimal”
solutions.

RRT*, Any-Time SPRT, RRT* and LBT-RRT are all designed for static environments and cannot address unforeseen
obstacle configuration changes. In contrast, RRTX repairs the graph to reflect both increasing and decreasing cost-to-goal
values that result when obstacles change. While similar ideas could be used to create a replanning algorithm based on
RRT#, such an algorithm would have asymptotically slower runtime than RRTX (see proofs in Section 5).

RRT* and LBT-RRT use “lazy-propagation” to spread information through an inconsistent graph (i.e., data is transferred
only via new node insertions), while Any-Time SPRT and RRT# maintain fully consistent graphs. In contrast RRTX maintains
an e-consistent graph. Note that ¢ in LBT-RRT should not be confused with ¢ in RRTX. Tuning é changes the performance
of LBT-RRT along the optimality spectrum between RRT and RRT*, while tuning e changes the performance of RRTX
along the graph consistency spectrum.

In static environments the asymptotic expected runtime to build a graph with n nodes is © (nlogn) for RRTX and
RRT#*, and w (n log? n) for RRT* (see Section 5); it is previously known that LBT-RRT has similar performance to RRT*
while Anytime SPRT is O (n2) We also prove that the time required to propagate new information through the graph (i.e.,

such that it becomes incorporated into the robot’s current plan) is asymptotically less for RRTX than for RRT* or RRT#

6 Journal name ()

(see Section 5). LBT-RRT can theoretically perform no better® than RRT*, while Any-Time SPRT must perform worse’

than RRTX (the latter are not formally treated in the current paper).
In practice, rewiring requires the assumption of a local steering function (used to calculate trajectories between nodes)
that solves the two point boundary value problem (either analytically or numerically). This assumption is shared by all of

these algorithms and RRTX. Therefore, RRTX should not be used when this assumption cannot be met.

2.4. Related work on asymptotically optimal multi-query re/planning

PRM (Kavraki et al., 1996) is the first asymptotically optimal sampling-based motion planning algorithm. It (and its
numerous descendants) use significant offline computation to create a detailed graph of configuration-space connectivity a
priori. The online planning phase involves connecting the current start and goal states to the graph and then using standard
graph search techniques (e.g., A* or Dijkstra) to find a solution. PRM* (Karaman and Frazzoli, 2011) extends the basic
idea by using a shrinking neighborhood size (similar to RRT*, described above) to achieve © (log n) expected per iteration
runtime.

Early roadmap algorithms assumed a particular obstacle layout during the precomputation phase and thus were thus
ill-suited to replanning in dynamic environments (although replanning vs. new tasks in static environments was very fast).
Although not specifically designed for replanning in dynamic environments, Lazy-PRM (Bohlin and Kavraki, 2000) is
better suited to the dynamic replanning problem given that it only collision checks edges that are likely to be part of the
solution. This idea is formalized in the context of dynamic environments by Leven and Hutchinson (2001) and Leven and
Hutchinson (2002) and further developed by Pomarlan and Sucan (2013). The latter three algorithms construct roadmaps
in obstacle-free environments, while edges are collision checked vs. obstacles online during planning/replanning and a
mapping between workspace and configuration space is used to determine when obstacles invalidate the current path.

The “Elastic Roadmap" (Yang and Brock, 2010) maintains a mapping between workspace and configuration space
and fixes a subset of nodes and edges with respect each obstacle’s local coordinate system. When obstacles move, these
nodes/edges move with the obstacle and reattach to the global roadmap.

Sparse subgraph spanners (Marble and Bekris, 2013; Salzman et al., 2014; Wang et al., 2015) increases speed during
the online phase by pruning the a priori roadmaps down to useful subset (or spanner) offline. The spanner is designed to
maintain near-optimality vs. the original roadmap while using significantly fewer nodes.

The main difference between these methods and RRTX is that they assume the existence of a significant offline planning
phase that is used to create the roadmap a priori (in this regard roadmap methods are becoming increasingly similar to
lattice based methods). Offline computation makes sense in the context of multi-query algorithms, where the significant
cost of offline roadmap construction is amortized over many online plans through the same space. In contrast, RRTX and
other single-query algorithms are designed for systems that assume different spaces may be encountered frequently (e.g.,
vehicles) and/or assume precomputation is otherwise impossible.

We note that the work on sparse subgraph spanners mentioned above is similar, in spirit, to how RRTX limits each
node’s edge set to O (logn) by culling outdated edges. Spanner-finding algorithms are designed for the precomputation
phase of multi-query algorithms, while RRT* culls edges online.

2.5. Other safety considerations in dynamic environments

“Escape trajectories” (Hsu et al., 2002) are additional backup plans stored at each node in a motion planing that can be used

if/when obstacle movement invalidates the current motion plan. Commonly, safety trajectories are a conservative stopping

The time savings achieved in LBT-RRT by not updating some neighbors vs. RRT* is bounded by the runtime difference between RRT* and RRT,
which is still not enough to overcome the inherent slow transfer speed of lazy propagation.
7 Anytime SPRT has similar runtime to inform neighbors about cost changes, but neighboring nodes are not rewired as they are in RRTX.

RRTX 7

or holding patterns (e.g., decelerate to a ground vehicle to a stop or fly an aircraft in a circle) that are used while a new plan
is calculated. Hauser (2012) takes this a step further by simultaneously calculating both a path to the goal and a path away
from obstacles; the robot switches to using the latter whenever it is in danger.

The use of safety trajectories is advisable with any replanning algorithm, including RRTX. Because the mechanism
by which they provide safety is orthogonal to the underlying algorithm that is used, we do not focus on their effects in the
current paper (all algorithms used in section 6.2 use the same basic “hold pattern” safety trajectories in the event that the
robot becomes disconnected from goal-rooted shortest path tree).

Safety can also be increased by considering the the set of nodes that place the robot into an “inevitable collision state”
(LaValle and Kuffner, 2001; Reif and Sharir, 1985; Fraichard and Asama, 2003) — a state that, while being safe izself,
places the robot into a situation in which a future collision cannot be avoided (e.g., flying into the mouth of a narrow box
canyon). This is particularly an issue with algorithms that optimize vs. an objective function that does not explicitly require
reaching a goal state, but can also be an issue for any algorithm that must explore an unknown or dynamic environment.
The latter can be mitigated by requiring a solution to consist only of nodes with safety trajectories (Bekris and Kavraki,
2007), although the added safety may results in a loss of completeness and optimality. Such ideas can also be used with
RRTX, although we do not consider them in the current paper.

Itis worth remembering that an environment is dynamic if (and only if) an agent’s model of obstacle movement may turn
out to be wrong. Therefore, it is possible to design situations in which any algorithm will fail in a dynamic environment.
While more accurate obstacle models will improve success rates; it is also easy to find problems that require a risk of
collision in order to reach the goal (e.g., crossing a busy street). This is a trait shared by all replanning algorithms as well

as humans.

2.6. Additional related work

RRT (LaValle and Kuffner, 2001) is the first single-query algorithm with provable asymptotic coverage guarantees. Its
main differences vs. RRTX are: (1) RRT is only concerned with finding a (i.e., any) feasible path and does not consider
path quality, (2) it is not designed for replanning. That said, due to its ease of implementation and widespread use, RRT
is often used inside of a control loop for replanning in practice. A new path is calculated whenever the old plan becomes
invalid (e.g., Kuwata et al. (2009) and Bertola and Gonzalez (2013)).

Epsilon A* is an any-time discrete graph algorithm that returns A* with a more and more admissible heuristic while
planning time remains. It is similar to RRTX in the sense that both use a user-defined parameter to control the suboptimality
of the shortest-path subtree that is found over a particular graph in order to speed up planning/replanning time. However,
path suboptimality in RRTX vanishes in the limit vs. the number of samples, while the suboptimality in epsilon A* vanishes
vs. the shrinking epsilon (over any-time re-runs of the algorithm). Epsilon A* is designed for planning in static environments
(and not for replanning in changing environments like RRTX). Being a discrete graph algorithm, it has similar difference
vs. RRTX as D*, D*-Lite, and Lifelong-A* (described above).

Hierarchical planners divide planning into L different scopes. When L = 2, as is most common, they are sometimes
referred to as the ‘local’ and ‘global’ planners, respectively (Otte et al., 2007). The global planner finds an approximate
path to the goal (usually either a geometric path (Sugiyama et al., 1994) or a Euclidean-based cost-field constructed
in the workspace (Sermanet et al., 2008; Knepper and Mason, 2012)). The local planner is responsible for moving the
robot a small distance from its current location while (often) respecting the kinematics of the robot, e.g., to a waypoint
located along the global path or by using the global field-cost to help select a local path. Modern hierarchical planners
use communication between the local and global planners (Plaku et al., 2010) and/or an assumption of task reversibility
Kaelbling and Lozano-Perez (2011) to ensure that the global planner also respects the robot’s kinematic constraints.

There is significant experimental evidence showing that hierarchical planners work well in many cases, including dynamic

8 Journal name ()

environments; however, theoretical guarantees are limited to probabilistic and/or resolution completeness and resolution
optimality. RRTX differs from hierarchical planners in that it is an all-in-one planner (constructing a single tree of valid
movement in the state space all the way from the robot’s current location to the goal). It is also asymptotically optimal.

Feedback planners generate a continuous control policy over the state space (i.e. instead of embedding a graph in the
state space). Most feedback planners do not consider obstacles (Tedrake et al., 2010; Rimon and Koditschek, 1992), while
those that do (LaValle and Lindemann, 2009) assume that obstacles are both static and easily representable in the state
space. In contrast, sampling-based motion planning algorithms assume that obstacles are not easily representable in the
state space, and RRT* assumes obstacles change unpredictably.

A preliminary version of the current paper appears as a conference paper in Otte and Frazzoli (2014). Major differences
and extension that appear in the current paper include: more detailed proofs in Sections 5, a new analysis regarding the
information transfer time for RRTX, RRT#, and RRT* in Section 5.5, four additional simulations in Section 6.1 (including
instructions on how to use RRTX in scenarios that contain time T as a dimension of X)), and four new experiments in

Section 6.2 verifying the analytical results of RRTX vs. RRT* and RRT#, and additional discussion in Section 7.

3. Notation, Assumptions, and Problem Statement

3.1. Preliminaries

Let X denote the robot’s D-dimensional state space. X is a measurable metric space that has finite measure. Formally,
Z (X) = ¢, for some ¢ < oo and .Z (+) is the Lebesgue measure; assuming d(z1, z2) is a distance function on X, then
d(z1,22) > 0and d(x1,x3) < d(x1,x2) + d(xe, z3) and d(z1, z2) = d(x2,x1) for all 21, x5, 23 € X. We assume the
boundary of X is both locally Lipschitz-continuous and has finite measure. The obstacle space X, C X is the open subset
of X in which the robot is “in collision” with obstacles or itself. The free space Xfrce = X\ Ayps is the closed subset of
X that the robot can reach. We assume X} is defined by a set O of a finite number of obstacles O, each with a boundary
that is both locally Lipschitz-continuous and has finite measure.

The robot’s start and goal states are Tggar; and Zgoa1, respectively. At time ¢ the location of the robot is Tt (t), where
Tbot : [to, teur] — X is the traversed path of the robot from the start time ¢ to the current time t..,, and is undefined for
t > tcur. The obstacle space (and free space) may change as a function of time and/or robot location, i.e. AXyps = f (¢, Tbot)-
For example, if there are unpredictably moving obstacles, inaccuracies in a priori belief of X, and/or a subset of X¢.ce
must be “discovered” via the robot’s sensors.

A movement trajectory 7(x1, x2) is the curve defined by a continuous mapping 7 : [0, 1] — X such that 0 — z; and
1 — zo. A trajectory is valid iff both 7(z1,72) N Xops = 0 and it is possible for the robot to follow 7 (z1, x2) given its
kinodynamic and other constraints. d (1, x2) is the length of 7(x1, x2).

3.2. Environments: Static vs. Dynamic and Related Assumptions

A static environment has an obstacle set that changes deterministically vs. t and Zpot, i.€., AXops = f(t, Thot) for f known

a priori. In the simplest case, AX,ps = (. In contrast, a dynamic8

environment has an unpredictably changing obstacle set,
i.e., f is a “black-box” that cannot be known a priori. The assumption of incomplete prior knowledge of AX,, guarantees
myopia; this assumption is the defining characteristic of replanning algorithms, in general. While nothing prevents us from
estimating AAX,p,s based on prior data and/or online observations, we cannot guarantee that any such estimate will be

correct. Note that AX,p,s # @ is not a sufficient condition for X to be dynamicg.

8The use of the term “dynamic” to indicate that an environment is “unpredictably changing” comes from the artificial intelligence literature. It should
not be confused with the “dynamics” of classical mechanics.

9For example, if X C R? space, T is time, and obstacle movement is known a priori, obstacles are stationary with respect to X C (Rd X 'ﬂ‘)
space-time.

RRTX 9

Ng (v) = Ny (v) = N (v) = N;*'l (v) = {v1,v2,v3} Ny, (v) ={v1,vs} N;;('u) = {v1,vs5,v6}
— Ustar 1 Ustar - —
NT1 (v1) D v o tart Q tart er (v1) D v N§ (va) D v
N;l (v2) > v : N;z (v2) F v N§ (vs) 3 v
\
Ny (v3) D v 1 N, (v3) Zv Ny (ve) 2 v
\
N
N,,J.“1 (vi) v NT,J; (vi) v Ni(va) 30
N,:rl (v2) D v N:; (v2) Zv Ng'(v5) EX
Nt (vg) 30 D N (vs) o Nf(vs) 30
_ 1 _
Cr(v) = {v1,v2} - Cr(v) = {v1,v3,va,v5}
g v
Cr(vs) v gonl goal Cr(ve) v
pF(v) = vs pi(v1) = pF(v2) = v Pr(v) = ve ph(v1) = pF(vs) = p(va) = pF(vs) = v

Fig. 3. Neighbor sets of/with node v. Left: v is inserted when r» = 7. Right: later » = r2 < r1. Solid: neighbors known to v. Black
solid: original in- N (v) and out-neighbors Ny (v) of v. Colored solid: running in- N, (v) and out-neighbors N, (v) of v. Dotted: v
is neighbor of v; # v. Dotted colored: v is an original neighbor of v;. Bold: edge in shortest-path subtree. Dashed: other sub-path.

3.3. Problem Statement of “Shortest-Path Replanning”

Given X, Xops, Zgoal> Thot (0) = Tstart, and unknown A‘X‘obs = f(tv xbot)5 find 7* (-rbota xgoal) and, until xy,0¢ (t) = Tgoal,

simultaneously update xpo¢(t) along m* (Zpot, Tgoa1) While recalculating 7* (Zbot, Zgoa1) Whenever AXops # 0, where

* .
U (xbota xgoal) = arg min drr (xbota xgoal)
T(Thot Tgoal) EX free

3.4. Additional Notation Used for the Algorithm and its Analysis

RRTX constructs a graph G := (V, E) embedded in X, where V is the node set and E is the edge set. With a slight abuse
of notation we will allow v € V to be used in place of v’s corresponding state x € X, e.g., as a direct input into distance
functions. Thus, the robot starts at vggare and goes to vgoa1. The “shortest-path” subtree of G is T := (Vir, E7), where T
is rooted at vgoa1, V- C V, and E7 C E. The set of ‘orphan nodes’ is defined V£ = V' \ V- and contains all nodes that
have become disconnected from 7~ due to AX,ps (¢ denotes the set complement of V- with respect to V' and not the set of
nodes in the complement graph of 7).

G is built, in part, by drawing nodes at random from a random sample sequence S = {v1,vo,...}. We assume v; is
drawn i.i.d from a uniform distribution over X’; however, this can be relaxed to any distribution with a finite probability
density for all v € Xfpc.. We use V;,, Gy, T, to denote the node set, graph, and tree when the node set contains n nodes,
e.g., Gn, = Gs.t. [V]| = n. Note m; = |V,

connectable to G. Indexing on m (and not ¢) simplifies the analysis.

at iteration 4, but m; # 4 in general because samples may not always be

E, () denotes the expected value of ‘-’ over the set S of all such sample sequences, conditioned on the event that
n = |V|. The expectation E,, ,,_ (-) is conditioned on both n = [V| and V,, \ V,,_1 = {v, } for v, at a particular z € X.

RRTX uses a number of neighbor sets for each node v, see Figure 3. Edges are directed (u,v) # (v, u), and we use a
superscript ‘—’ and ‘+’ to denote association with incoming and outgoing edges, respectively. ‘Incoming neighbors’ of v
is the set N~ (v) s.t. v knows about (u,v). ‘Outgoing neighbors’ of v is the set N (v) s.t. v knows about (v, u). At any
instant N* (v) = N (v) U N;F (v) and N~ (v) = N, (v) U N,~(v), where N, (v) and N, (v) are the original PRM*-like
in/out-neighbors (which v always keeps), and N,~(v) and N, (v) are the ‘running’ in/out-neighbors (which v culls as
r decreases). The set of all neighbors of v is N(v) = N (v) U N~ (v). Because T is rooted at vgoa1, the parent of v is
denoted p-(v) and the child set of v is denoted C'~(v).

10 Journal name ()

Algorithm 1: RRT*(X, 5)

1V {Ugoal} 5

2 Ubot, € Ustart »

3 while v,ot # Vgoal do

4 | 7 < shrinkingBallRadius(|V
5 | if obstacles have changed then

6 L updateObstacles() ;

)

7 | if robot is moving then
8 L Ubot <— updateRobot(vhet) ;

9 | v < randomNode(S) ;

10 | Upearest ¢ nearest(v);

1 if d('Ua vnearest) > § then

12 L v 4 saturate(v, Unearest) 5

13 | if v € X5 then

14 | | extend(v,r);

15 | if v € V then

16 rewireNeighbors(v) ;

17 reduceInconsistency() ;

g(v) is the (e-consistent) cost-to-goal of reaching vgoa from v through 7. The look-ahead estimate of
cost-to-goal is 1lmc(v). Note that the algorithm stores both g(v) and lmc(v) at each node, and updates
Imc(v) <= minge N+ (y) dr (v,) + Imc(u) when appropriate conditions have been met. v is ‘e-consistent’ iff
g(v) — Imc(v) < €. g (v) is the cost-to-goal of v given T,,. Recall that 7% (v, Vgoa1) is the optimal path from v to vgoal
through X’; the length of 7% (v, Ugoa1) is g*(v).

Z, 1s the visibility set of a particular graph of size m, where a visibility set of a graph contains all points that can safely
connect to any node in that graph.

@ is the priority queue that is used to determine the order in which nodes become e-consistent during the rewiring
cascades. The key that is used for @ is the ordered pair (min(g(v), 1Imc(v)), g(v)) nodes with smaller keys are popped
from @ before nodes with larger keys, where (a,b) < (¢,d) iffa < ¢V (a =cAb<d).

4. The RRT* Algorithm

RRTX appears in Algorithm 1 and its major subroutines in Algorithms 2-6 (minor subroutines appear in Appendix A).
The main control loop, lines 3-17, terminates once the robot reaches the goal state. Each pass begins by updating the
RRT*-like neighborhood radius r (line 4), and then accounting for obstacle and/or robot changes (lines 5-8). “Standard”
sampling-based motion planning operations improve and refine the graph by drawing new samples and then connecting them
to the graph if possible (lines 9-14). RRT*-like graph rewiring (line 16) guarantees asymptotic optimality, while rewiring
cascades enforce e-consistency (line 17, and also on line 6 as part of updateObstacles()). saturate(v, Unearest), line 12,
repositions v to be § away from vpeayest-

extend(v,) attempts to insert node v into G and 7 (line 5). If a connection is possible then v is added to its parent’s
child set (line 6). The edge sets of v and its neighbors are updated (lines 7-13). For each new neighbor u of v, u is added
to v’s initial neighbors sets Ny (v) and N, (v), while v is added to u’s running neighbor sets N,"(u) and N, (u). This
differentiation allows RRT* to maintain O (logn) edges at each node, while ensuring 7 is no worse than the tree created

by RRT* given the same sample sequence.

RRTX 11

Algorithm 2: extend(v,)

1 Vyear ¢ near(v,r) ;

2 findParent(v, Viear) 3

3 if p¥(v) = () then

4 | return

sV« VU{v};

6 Cr(p7(v)) < CF(p7(v)) U {v};
7 forall the v € V., do

8 | if (v, u) N Xops = 0 then

9 LNJ()<—No()U{u};

10 Ny (u) < N7 (u) U {v};
u | if 7(u,v) N Xyps = 0 then
12 NI (u) < NF(u)U{v};
13 L N§ (v) < Ny (v) U {u};

Algorithm 3: cullNeighbors(v,r)
1 forall the u € N, (v) do
2 | if r < dr(v,u) and pF(v) # u then

3 L N (v) = N;F(v) \{u}
4 Ny (u) <= N7 (u) \ {v};

Algorithm 4: rewireNeighbors(v)

1 if g(v) — Imc(v) > € then

cullNeighbors(v,r) ;

forall the w € N~ (v) \ {pF(v)} do

if Imc(u) > dx(u,v) + 1mc(v) then

1mc(u) < dy(u,v) + Imc(v)
makeParent0f (v, u) ;
if g(u) — 1Imc(u) > € then
L verrifyQueue(u) ;

@ NN R W N

cullNeighbors(v,r) updates N, (v), and N,'(v) to allow only edges that are shorter than r—with the exceptions
that we do not remove edges that are part of 7. RRTX inherits asymptotic optimality and probabilistic completeness from
PRM*/RRT* by never culling N (v) or Ny (v).

rewireNeighbors(v) rewires v’s in-neighbors u € N~ (v) to use v as their parent, if doing so results in a better cost-
to-goal at u (lines 3-6). This rewiring is similar to RRT*’s rewiring, except that here we verify that e-inconsistent neighbors
are in the priority queue (lines 7-8) in order to set off a rewiring cascade during the next call to reduceInconsistency().

reduceInconsistency() manages the rewiring cascade that propagates cost-to-goal information and maintains e-
consistency in G (at least up to the level-set of 1mc(+) containing vp,). It is similar to its namesake from RRT*, except that
in RRTX the cascade only continues through v’s neighbors if v is e-inconsistent (lines 3-5). This is one reason why RRTX
is faster than RRT#. Note that v is always made locally O-consistent (line 6).

updateLMC(v) updates 1mc(v) based on v’s out-neighbors N+ (v) (as in RRT#).
findParent(v, U) finds the best parent for v from the node set U.

propogateDescendants() performs a cost-to-goal increase cascade leaf-ward through 7 after an obstacle has been

12 Journal name ()

Algorithm 5: reduceInconsistency()

1 while size(Q) > 0 and (keyLess(top(Q), Ubot) OF ImC(Vhot) # &(Vbot) OF &(Ubot) = 00 OF Q 2 Upet) do
2 | v pop(Q):

3 | if g(v) — 1mc(v) > € then

4 updateLMC(v) ;

5 L rewireNeighbors(v) ;

=)

g(v) < 1mc(v) ;

Algorithm 6: findParent(v,U)

1 forall the v € U do

2 | m(v,u) + computeTrajectory(X,v,u);

if d;(v,u) <rand lmc(v) > dr(v,u) + 1mc(u) and 7(v, u) # 0 and Xops N7 (v, u) = 0 then
p7+—(v) —u;
1mc(v) < dr(v,u) 4+ 1mc(u) ;

n AW

added; the cascade starts at nodes with edge trajectories made invalid by the obstacle and is necessary to ensure that
the decrease cascade in reduceInconsistency() reaches all relevant portions of 7 (as in D¥). updateObstacles()
updates G given AX,,s; affected by nodes are added to) or V.7, respectively, and then reduceInconsistency() and/or

propogateDescendants() are called to invoke rewiring cascade(s).

5. Runtime Analysis of RRT, RRT*, RRTX, and RRT*

The replanning problem can be viewed as a static planning problem that is interrupted with repair operations whenever
AX,,s # (0. In Sections 5.1-5.3 we prove bounds on the time required by RRT, RRT*, RRTX, and RRT* to build a search-
graph containing n nodes in the static case when AX,,s = . In Section 5.4 we discuss the extra operations required by
RRTX when AX,,, # 0.

Lemmal. 77 logj = © (nlogn).

Proof.log (j + 1) — logj < 1 for all j > 1. Therefore, by construction:
—n+ [["logz dx < Yoy logj <n+ [{" log & dz for all n > 1. Calculus gives: —n + =2 + nlogn < > logj <
n+ 11;—; +nlogn O

Slight modifications to the proof of Lemma 1 yield the following corollaries:

Corollary 1. 377 lofj = O (log®n).

Corollary 2. °7 | log® j = © (nlog®n).

Let fRRT and fERT* denote the runtime of the ith iteration of RRT and RRT*, respectively, assuming samples are
drawn uniformly at random from X according to the sequence S = {vy, vs, . ..}. Let fERT (n), fRET* (n) and fRET™ (n)

denote the cumulative time until n = |V;,|, i.e., the graph contains n nodes, using RRT, RRT*, and RRTX, respectively.

5.1. Expected Time until |V'| = n for RRT and RRT*

LaValle and Kuffner (2001) and Karaman and Frazzoli (2011) give the following propositions, respectively:

Proposition 1. f7FT = © (logm;) for all i > 0, where m; = |V, | at iteration i.

RRTX 13

Proposition 2. E (7)) = © (fFRT) foralli > 0.
The dominating term in both RRT and RRT* is due to a nearest neighbor search.
Theorem 1. E (f77(n)) = © (nlogn).

Proof. Trivially P ({lim; oo m; = ¢ < c0}) = 0, so we canignore the measure zero setof all S € S thatresultin the visibil-
ity set Z,,, being undefined for all m > ¢, for any ¢ < oo. By construction, lim;_, o Z,,, < Xfyee, and also by construction,

2, > Z foralli > 1. Thus, P ({ f((gl)) < j(zx)) < 3‘(2;((:\:2?)}) = 1forallm > 1 and so g((g)) <En, (%)
j(x)

. . . n—1 L(Xx ZL(x
EZETINE Summing m terms yields another inequality:) =~ 2(()) logm < > (%) logm

IN

IN

IN

Z;_:ll % log m. Note that Z ((X)) = ¢; and ﬂ#j«)) = ¢ for constants ¢; and ¢y, and thus ¢ >0 _ logm

Znn;ll En, (3((2))) logm < ¢o Zm 1 logm. By definition E (f#T(n)) = Z?n:ll Enm (3’((2))> log m. The exis-
tence of a final term does not affect asymptotics: Y . _; logm =logn + > _ 11 logm = 0© (Zm 1 log m) Applying
Lemma 1 finishes the proof. O

Corollary 3. E (f777*(n)) = © (nlogn).

Theorem 1 and Corollary 3 show that rejecting samples (e.g., samples not connected due to obstacle conflicts) effects
performance by at most a constant multiple, and furthermore, that the time required by RRT and RRT* to build a graph of

size n is a convenient O (nlogn).

5.2. Expected Amortized Time until |V'| = n for RRT* (Static X)

In this section we prove: E,, (f RRT (n)) = O (nlogn). The proof involves a comparison to RRT* and proceeds in the

following three steps:

1. RRT* cost-to-goal values approach optimality, in the limit as n — co.

2. For RRT*, the summed total difference (i.e., over all nodes) between initial and optimal cost-to-goal values is O (en);
thus, when n = |V,,|, RRTX will have performed at most O (n) cost propagations of size ¢ given the same S.

3. For RRTX, each propagation of size e requires the same order amortized time as inserting a new node (which is the
same order for RRT* and RRTX).

By construction RRTX inherits the asymptotically optimal convergence of RRT* (we assume the planning problem, cost
function, and ball parameter are defined appropriately). Theorem 38 from Karaman and Frazzoli (2011) has two relevant

corollaries:
Corollary 4. P ({limsup,, ., gn(v) =g*(v)}) = 1forallv : v € Ve
Corollary 5. lim,,_,o E,, (g,(v) —g*(v)) =0forallv : v € V<.

Consider the case of adding v, as the nth node in RRT* (Figure 4), where v, is located at x. The RRT* parent of v,, is p
and d(v,, p) is the distance from v, to p. The length of the trajectory from v, to p is d (vs, p). The radius of the shrinking
neighborhood ball is 7. By construction d(v,,p) < r and d, (vs,p) < 7. Let d(v,, p) be a stand in for both d(v,., p) and

d(vg, p). The following proposition comes from the fact that lim,, .. 7 = 0.
Proposition 3. lim, . E, ,, (&(vx, p)) = 0, where p is RRT* parent of v,.

We now prove that the expected difference between the initial cost-to-goal of a node v, and its optimal cost-to-goal

approaches 0, in the limit, as n — oo (i.e., as the iteration that v, is inserted into the graph approaches infinity).

Lemma 2. lim,,_,o E,, ., (g, (vy) — g*(v5)) = 0.

14 Journal name ()

Fig. 4. Node v, at x is inserted when n = |V,,|. The parent of v, is p.
dr(vs, p) is the distance from v, to p along the (red) trajectory. gn (vz)
and g, (p) are the cost-to-goals of v, and p when n = |V,,|, while g* (v,)
and g* (p) are their optimal cost-to-goals, respectively. The neighbor ball
(blue) has radius 7. Obstacles are not drawn.

gn(vm) = gn(p) + d‘n’(vmp)

Proof. By the triangle inequality g* (v,) + d(p, v.) > g*(p). Rearranging and then adding g, (v,) to either side:

gn(vz) — g"(vz) < gn(vz) — g*(p) + d(p, vz). (1)

(1) holds overall S € {S : V,, \ V,,_1 = {v,}} C S, thus

En v, (8n(vz) — €% (v2)) < Enw, (gn(ve) — g"(p) + d(p,vz)) - (2)

By construction g, (v,,) = g,(p) + d (v, p). Substituting into (2), using the linearity of expectation, and taking the limit

of either side:

lim Ep., (gn(vw) -g (Uz)) <

n— o0
lim E,,, (gn(p) —g"(p)) + lim Ep v, (dr(ve,p)) + lim En,o, (d(p,vz)) -

n—oQ n— oo n— oo

The law of large numbers guarantees that x (i.e., location of v,,) becomes uncorrelated with the cost-to-goal of p, in the
limit as n — oo. Thus, consequently: lim,, o0 Ey, o, (gn(p) — g*(p)) = limy, 00 Es, (g0 (p) — g™ (p)). Using Corollary 5
and Proposition 3 (twice) finishes the proof. |

Applying the law of total expectation yields the following corollary regarding the nth node added to V', and completes
step 1 of the overall proof.

Corollary 6. lim,,_, . E, (g,(v) — g*(v)) =0, where V,, \ V,,_1 = {v}.

We now show that, for RRT*, the expected cumulative difference between initial and final cost-to-go over all nodes in
G,, is dominated by a linear function of n (i.e., is O (n)). Note that this is the sum of all cost that was, is, or ever will be

propagated through any node in G,,.

Lemma3. >" _ E,, (g (vm) — g*(vm)) = O (en) for all n such that
1 < n < ooandwhere Vi, \ Vin_1 = {vm } forallm s.t. 1 <m < oo.

Proof. Using the definition of a limit with Corollary 6 shows that for any c; > 0 there must exist some n. < oo such that
E, (gn(v) — g*(v)) < ¢1 for all n > n.. We choose ¢; = € and define co = > E,p, (g (vm) — g% () so that by
construction Y _ B, (gm(vn) — g%(vn)) < ez +enforallnst. 1 <n < oo. O

Let fP"(n) denote the total number of cost propagations that occur (i.e., through any and all nodes) in RRTX as a

function of n = |V,,|.

Lemma 4. E, (f?"(n)) = O (n)

RRTX 15

Proof. When m = |V,,,| a propagation is possible only if there exists some node v such that g, (v) — g*(v) > €. Assuming
RRT* and RRTX use the same S, then by construction g, (v) for RRT* is an upper bound on g, (v) for RRTX for all
v € V,, and msuch that 1 < m < co. Thus, f7"(n) < (1/€) Y1 _; &m(vm) — g*(vm), Where g, (vy,) is the RRT*-value
of this quantity. Using the linearity of expectation to apply Lemma 3 we find that E,, (f?"(n)) < (1/€)O (en). O

Corollary 7. lim w < 1 for some constant ¢ < 0.
n—oo

Corollary 7 concludes step two of the overall proof. The following Lemma 5 uses the notion of runtime amortization'”
Let f5in9%¢(n) denote the amortized time to propagate an e-cost reduction from node v to N (v) when n = |V,,|.

*singzc(

Lemma 5. P ({ lim chgn) < 1}) = 1 for some constant ¢ < oo.
n—oo

Proof. By construction, a single propagation through v requires interaction with | N (v)| neighbors. Each interaction normally
requires O (1) time—except when the interaction results in u € N (v) receiving an e-cost decrease. In the latter case w is
added/updated in the priority queue in O (logn) time; however, we add this O (logn) time to u’s next propagation time,
so that the current propagation from v only incurs © (1) amortized time per each u € N(v). To be fair, v must account for
any similar O (logn) time that it has absorbed from each of the ¢; nodes that have given it an e-cost reduction since the
last propagation from v. But, for ¢; > 1 the current propagation from v is at least c; € and so we can count it as ¢ different
e-cost decreases from v to N (v) (and v only touches each u € N (v) once). Hence, ¢1 f579!¢(n) = |N (v)| + ¢10 (logn).

By the law of large numbers, P ({lim,,_,o |N(v)| = c2logn)} = 1, for some constant co s.t. 0 < co < co. Hence,
P ({limn_mo fsmgle(n) < (ca/c1)logn + log n}) = 1, setting ¢ = 1 + ¢5 /¢y finishes the proof. O
B (7751 ()

clogn

Corollary 8. lim < 1 for some constant ¢ < 0.
n—oo

Let f%!(n) denote the total runtime associated with cost propagations by the iteration that n = |V;,|, where f%!(n) =

Z;:(") feingle (m;) for a particular run of RRT* resulting in n = |V,,| and f?"(n) individual e-cost decreases.

]En(fall(n))

Lemma 6. lim
cnlogn

n—oo

Proof. limp o0 En (f77(n)) # 0 and limy,_e0 By, (fsngE(n)) £ 0, 50 obviously

lim En (77 (n))En (179 ())
n—00 En(f77(n))En (f4in91¢(n))

< 1 forc < oo

— 1. Although f*"9!¢() and f"(n) are mutually dependent, in general, they become
En(fpr(n)fsingze(n))]En(fpr(n))En(fsingze(n))

; 11 _ _

independent’' in the limit as n — oco. Thus, nl;ngo B (7 () En (Foe () nlﬁoo 5 (fpr(Ve (F () 1. Note that
prr(") fsingle(n))

the previous step would not have been allowed outside the limit. Using algebra: hm . (fpr B () = 1. Using

Corollaries 7 a(n()i 8: .
E, n) fsingle E, ‘fr n) gsingle ,
A O) IR 0 > Y S 0))

n—yoo clcznlogn = nlsoo]En(fpr(n))]En(fsmgza(n))
¢ co finishes the proof. O

= 1 for some c1, co < oo. Using algebra and defining ¢ =

Corollary 9. E, (f*(n)) = O (nlogn).
Theorem 2. E, (fRRTX (n)> = O (nlogn).

Proof. When AX,;,, = () RRTX differs from RRT* in 3 ways: (1) e-cost propagation, (2) neighbor list storage, and (3)
neighbor list culling'?. The runtime of RRT* can be found by adding the extra time of (1), (2), and (3) to that of RRT*.

10Tn particular, if a node u receives an e-cost decrease > € via another node v, then u agrees to take responsibility for the runtime associated with that
exchange (i.e., including it as part u’s next propagation time).

11 e., because the number of neighbors of a node converges to the function log n with probability 1 (as explained in Lemma 5)

12Note that neighbors that are not removed during a cull are touched again during the RRT*-like rewiring operation that necessarily follows a cull
operation.

16 Journal name ()

Corollary 9 gives the asymptotic time of (1). (2) and (3) are O (|N(v)|), the same as finding a new node’s neighbors in
RRT*. Therefore, E,, (fRRTX (n)) =E, (ff%7*(n)) + E, (f*(n)). Trivially:

E, (fRRT*(n)) = © (E, (f*7*(n))), and by Theorem 3 and Corollary 9:

E, (FRETX (n)) = 0 (nlogn) + O (nlogn) = O (nlogn) 0

5.3. Expected Time until |V'| = n for RRT"
RRT# does not cull neighbors (in contrast to RRTX) and so all nodes continue to accumulate neighbors forever.
Lemma 7. E, (|N(v)|) = © (log2 n) forall v s.t. v € Vy,, for some m < n < .

Proof. Assuming v is inserted when m = |V,,,|, the expected value of E,, (| N (v)|), where n = |V,,| for some n > m is:
E, (IN(v)]) = clogm+3_7_ CI(J’gJ =c <logm + (Z 1°g3> - (Z;":l M)) where c is constant. Corollary 1

J
finishes the proof. O

RRT# propagates all cost changes (in contrast, RRT* only propagates those larger than €). Thus, any cost decrease at v
is propagated to all descendants of v, plus any additional nodes that become new descendants of v due to the propagation.
Let fP"#(n) be the number of propagations (i.e., through a single node) that have occurred in RRT* by the iteration that

n = |V,|. We now prove that fP"#(n) dominates n in the limit as n approaches infinity.
Lemma 8. P(lim,,_, Ty = 0) = 1 with respect to S.

Proof. By contradiction. Assume that P(lim,, fp%(n) = 0) = ¢; < 1. Then there exists some ¢y and c3 such that

P(limy,— 00 ff’T(n) >c>0)=c3>0 and therefore E(llmnﬁoo pr#(n)) > cocs > 0, and the expected number of cost

propagations to each v s.t. v € V,, is¢cy =

an infinite number of cost decreases with probability 1 as a result of RRT*’s asymptotic optimal convergence, and each

decrease (at a non-leaf node) causes at least one propagation. |

The runtime of RRT# can be expressed in terms of the runtime of RRT* plus the extra work required to keep the graph

consistent (cost propagations):
RRT pr # (m; T
fm #_ @(ﬁf%T*) Zf)f]:D #. (3)

Here, fP"# (m;) is the total number of cost propagations (i.e., through a single node) by iteration i when m; = |V, and

7

is the time required for the jth propagation (i.e., through a single node). Obviously ff "# > ¢ forall J, where ¢ > 0.

Also, for all j > 1 and all m the following holds, due to non-decreasing expected neighbor set size vs. j:
En (%) < B (£127))

. logZ n
Lemma 9. lim noog =0.
n-so0 K, (Zﬂ”#m) 7%

50 (S0 £77%)
Pr()Of 'n,h~>H;o E, (Z;p:ﬁ(ln) fjpr#)

tor approaches 0, in the limit, by Lemma 8, and the smallest term in the denominator is no smaller than the largest

= 0 because the ratio between the number of terms in the numerator vs. denomina-

: . : En (Z” 1 fpvw#) : En(le pr#) _ s
term in the numerator, by (4). Obviously, nh_)rr;o - (Z TE I #) < nh_}rglo - (Z fiﬁ(l";ffr #> = 0. Rearranging:
; j= E (fpr#) _ i= IE (CIngmj) _
nl;rrgo = (prr#(") I) = 0. By Lemma 7: 71152O B () 1 for some constant ¢ such that 0 < ¢ < oo.
Hence,
i it B () 1By (clog®my) e35 By (log?my)
n—oo E, (Z;Zz#(n) f]@#) ZJ 1 E (fpr#) E. (prT#(") f’.”"#>

Corollary 2 with the linearity of expectation finishes the proof. |

RRTX 17

Corollary 10. E,, (Zf;#(n) sz_rr-#) =w(n log? n).

In the above, w (n log? n) is a stronger statement than) (n log? n) . We are now ready to prove the asymptotic runtime
of RRT*,

Theorem 3. E,, (fRT#) =w (n log? n)

Proof. Taking the limit (as m; = n — o0) of the expectation of either side of (3) and then using Corollaries 3 and 10, we

see that the expected runtime of RRT* is dominated by propagations: E,, (,I;” RT#) =0 (nlogn) +w (n log? n) O

5.4. RRTX Obstacle Addition/Removal in Dynamic Environments

The addition of an obstacle requires finding Vops, the set of all nodes with trajectories through the obstacle, and takes
expected O (|D(Vobs)| logn) time. The resulting call to reduceInconsistency() interacts with each u € D(Vops),
where D(Vps) is the set of all descendants of all u € Vs, and each interaction takes expected time O (logn) due to
neighbor sets and heap operations. Thus, adding an obstacle requires expected time O (|D(Vops)| logn). Removing an
obstacle requires similar operations and thus the same order of expected time. In the special case that the obstacle has
existed since tg, then D(Vop,s) = 0 and time is O (1).

5.5. Information transfer time of RRTX vs. RRT* and RRT"

Another important performance metric is the time required by an algorithm to transfer information. In particular, how long
does it take for knowledge of a cost decrease at node v to be transferred to the relevant portions of the graph? e.g., to vyopot?
Information transfer time is essentially the reaction time of the robot, and quicker information transfer enables more nimble
replanning.

RRT* and RRT* were originally designed to solve problems in static environments and cannot handle cost increases
(for instance, due to the appearance of an unexpected obstacle). Consequently, information transfer time of RRT* and
RRT# are technically only defined for cost decreases (such as when a shortcut is discovered due to random sampling — a
common event when planning in static environments). That said, it is conceivable that RRT* could be modified to handle
both increases and decreases by using some of the techniques proposed in the current paper. The discussion that follows
regarding information transfer time for RRT* is simultaneously valid for both the original RRT* and an augmented version
of the algorithm that handles cost increases with an increase propagation wave (similar to RRTX). On the other hand,
RRT#* cannot be modified to handle cost increases without significantly altering the runtime properties of the algorithm;
the following discussion regarding information transfer time for RRT* is therefore valid only for static environments as
well as the special case of dynamic environments where obstacles may disappear but not appear.

Let tf; fT# (n) denote the time required in RRT* to transfer information from node v to node v when n = |V|, and
where we assume that u € D(v) after the transfer. Let tfiffTX (n) denote a similar quantity for RRTX.

Let Ag(v) denote the magnitude of the cost decrease at v. Let D(v) be the set of all nodes to which information
is propagated during a rewiring cascade. By construction, D(v) = {u : u € D(v) A g(u) < g(vpot)}, where D(v) is the
descendant set of v calculated after the cascade. By inspection, it is easy to see that if Ag(v) > ¢, then RRTX should have
a quicker information transfer time than RRT*. This is formalized in the following theorem.

Theorem 4. If Ag(v) > e then E, (tRRTX (n)) =0 (En (fﬁi#(n)))

V,Ubot

Proof. When Ag(v) > e then both RRTX and RRT* use rewiring cascades to propagate knowledge to all D(v) before
information transfer is complete. Each step of the cascade (i.e. through a particular node u € ﬁ(v)) of either algorithm
requires touching | N (u)| neighbors of u. Let | N (u)|4 be the | N (u)| of RRT* and let | N (u)|x be the |N(u)| of RRTX,

18 Journal name ()

o
HEEE

Fig. 5. Lazy information propagation in RRT* after a shortcut is found in between two obstacles. Light blue is the region where

information can propagate, red is the region where information has propagated. Obstacles are gray, the search tree has black edges and
gray/black nodes. Start and robot nodes are black, as are all nodes added after the shortcut is found. Smaller gray nodes are from before
the shortcut was found at v. 1: The original shortcut is found. 2: a new node u can connect to v and information is propagated further.
3: four nodes are inserted that do not propagate information. 4-7: nodes continue to be added (some contribute to propagation, others do
not). 8: The information about the shortcut is finally propagated to vpot.

assuming RRT* and RRTX use the same random sample sequence S. By construction, for all u the following holds:

[N (u)|x < |N(u)|g. Indeed, lim |N(u)|x/|N(u)|x = 0 with probability 1, i.e., because the neighborhood of a particular
n— oo

node u is maintained to be constant in RRTX and increases without bound in RRT*. Note that while |D(v)| may not be the

same for RRTX and RRT*, the ratio between the two approaches 1 in the limit, as n — oco. O

Alternatively, for changes less than ¢, we should expect the information transfer time of RRTX to be similar to that of
RRT*.

V,Vbot V,VUbot

Theorem 5. If Ag(v) < e then E,, (tRRTX (n)) =0 (E, (t77T*(n)))

Proof. When < e both RRT* and RRTX use the exact same information transfer process (i.e., lazy rewiring). |

However, how RRTX compares to RRT* when Ag(v) > € is not obvious. The rest of this section is dedicated to
characterizing the performance of RRT*, in general, as well as the performance of RRTX when Ag(v) > e in order to
make this comparison.

In RRT* information transfer happens over many iterations, and each iteration runs in expected time O (logn). In
contrast, RRTX propagates all changes in a single iteration but that particular iteration typically requires much more
time than the average iteration of RRTX. In order to formalize comparison between RRT* and RRTX, we assuming both
algorithms use the same S and then define that RRT* has “completed” an “e-close” information transfer when g(vpot) of
RRT*is < €+ g(vpor) of RRTX. Let tfﬁfb’zt (n) denote the time required for an e-close information transfer in RRT* from
U 10 Vpot-

RRT* uses “Lazy-propagation” as depicted in Figure 5. The particular process by which information is transferred

through the graph depends on X and X4 and is difficult to analyze, in general. On the other hand, it is straightforward to

RRTX 19

SO | S

1

Fig. 6. The simplified process we evaluate to find a lower bound on the information transfer time of RRT*. r is the radius of the
neighbor ball. 7¢ is defined by the point v = arg minu : g(v) + d(v, u) + d(u, Vbot) > g(vbot) + €, Where the final g(vpot) is the
post-cascade value from RRTX. # = max(r, rc). The hyperrectangle Z (light blue) has volume #2~'d(v, vbot) Assuming information

has propagated to J#,_1 (small red hyperrectangles) then sampling from within J#,_; U /7 causes information to propagate to .
Volume .& (4,) = 2P 7P~ 1),

tRRT*

calculate a loose lower bound on E,, (Do

(n)) by considering the simplified process (constructed in Figure 6) that is
guaranteed to transfer information more quickly than RRT*.

We now walk through the differences/considerations between/of general information propagation in RRT* and the
simplified process. Note that each simplification results in a slightly looser bound on E,, (tZFT* (n)).

1. Starting with the same X" and X}, as RRT*.

2. Obstacles between v and v,.qp0¢ are removed in the simplified process (thus, transfer time may be artificially shorter due
to the triangle inequality since it does not have to go around obstacles).

3. Consider the point v} = arg minu : g(v) 4+ d(v, u) + d(u, Vbot) > g(vbot) + €, where the final g(vpot) is the post-
cascade value from RRTX. Let 7. be the shortest distance from v* to the line segment (v, Vpot)-

4.Let # = max(r,r.) and consider the D-dimensional hyperrectangle % that has v and vy in the center of its ‘left’
and ‘right’ faces, and the other faces are located 7 from (v, Vot). The volume of Z is £ (#) = # P~V d(v, vpet). By
construction, any e-close information transfer in RRT* must follow a path through the interior of Z%.

5. We assume that inserting v causes information transfer to all points z € % at no additional runtime cost beyond
the usual rewiring of neighbors in N (v), where .7 is the hyperrectangle with volume . (.#) = 2P7#(P~1) that is
centered at v and aligned with Z. This loosens the bound vs. RRT* because an insertion causes more nodes to receive
the new information than in RRT*.

6. We cover the rest of # with non-overlapping hyperrectangles 7% fork = 1,..., K,where K = [(d(v, vpot)—7)/(27)],
allowing ##% to go past the end of Z. (Note that .Z (74,) = £ (), i.e. information transfer volume does not shrink
from the insertion of v until e-close information transfer has been completed, this loosens the bound vs. RRT*.

7. We assume that if information has propagated to any pointin .74 1, then inserting a point in .73, _ 1 U5, causes “perfect”
information transfer to all x € ;. This artificially increases the probability of sampling near a part of the graph that
has already received the information, and thus decreases the expected time of information transfer. Furthermore, we

assume there is no additional runtime cost beyond rewiring of neighbors in N (v) where we define E (| NV (v)]) to be

20 Journal name ()

constant until information propagates to vp,.t—further loosening the bound vs. RRT* since RRT* has increasing | N (v)]
VSs. M.
8. Finally, we assume that once information has propagated to .7% then e-close information propagation is complete. This

further loosens the bound vs. RRT* because there are many paths through Z that are not e-close.

By Construction an e-close information transfer in the simplified process happens if and only if information travels
through 74, ..., 7#%.

e 565112

€,V,Vbot logn

Proof. There are K = [(d(v, vpot) — r)/(2r)] information transfers (one each for 7, . .., #%). Assuming information

has propagated to .77}, _1, the chances that a new point causes a transfer to 77,1 is given by W

expected time to propagate from 775, to /7, is ﬂéfi% By construction .& (G _y U #4,) = 2P0 (D=1 "and

and so the

Z (X) can be considered a constant for the purposes of this analysis. In our simplified process the expected time required
for neighbor interactions is held fixed at © (logn) (a lower bound on the actual case). Thus, recursion can be used to

calculate the expected time for an e-close information transfer, i.e.,

K L (Xtree d(v,vpes) — 1)/ (2r
B (72, 00) 2 S 25 o = xS D g ®)

logn) /D

for constants ¢; and co. By construction r < 7 and from Karaman and Frazzoli (2011) we know that r = ~ (=

Substituting into (5) and simplifying yields the following looser bound:

E (tRRT* (n)) > ¢ d(v,vhot) n n \'"" _ n log n
™ ATV, Vbot =" (vP +1) logn \logn ~Plogn

and noting that v is constant given D and d(v, vpot) is constant given v and vy,

1/D
En (tRRT* (n)) =0 cp n L /
€,V,VUbot logn

where cp = © (%) is a constant depending on d. O

Theorem 7. If Ag(v) > € then E,, (tRRTX (n)) = O (nlogn)

V,Ubot

Proof. In a “worst-case” scenario v is the root node, and so a change must propagate through all n nodes in the graph. Each
node u hasE,, (|N(u)]) = © (logn). As discussed in the derivation of Lemma 5, the total amortized time for a propagation
through u is © (1) per each w € N(u), and hence using linearity of expectation, E,, (tfffg:((n)) < CZ?=1 logn, for

some constant ¢, where the bound is loose, since we are considering a “worst case” scenario. Indeed, the full amortization

is even repaid in this worst case, since leaf nodes do not propagate cost further. O

1/D
The fact that (L> = w (logn) for all D < oo gives the final corollary:

logn

€,V,Vbot V;Ubot

Corollary 11. If Ag(v) > € then E,, (tFRT* (n)) = w (]En (tRRTX (n)))

For cost changes > ¢, RRTX has a faster information transfer time than RRT*.

RRTX 21

6. Simulations and Experiments

In Section 6.1 we show how RRTX can be applied in a variety of dynamic environments. While we include still-frame
image sequences of examples in the current paper (limited to two examples for brevity), videos are a much better medium
in which to observer the utility of RRTX in dynamic environments. We have uploaded a number of videos showing the
real-time performance of RRTX at (Otte, 2014), and we encourage readers to watch them.

In Section 6.2 we run a number of experiments in both static and dynamic environments comparing the performance of
RRTX vs. other algorithms as well as evaluating the effects of different e. In dynamic environments we compare RRTX to
both DRRT Ferguson et al. (2006) and the naive approach of re-starting RRT whenever the current path becomes invalid.
DRRT was chosen because it is the only other single-query sampling-based motion planning algorithm we know of that
plans from goal to start (this is advantageous for a number of reasons discussed in Section 2. The comparison to restarting
RRT is included as a baseline.

Experiments in static environment involve a bottleneck environment designed to highlight the benefits of graph con-
sistency and e-consistency with respect to information transfer time (i.e. the time it takes new information to become
actionable with respect to the robot’s path).

Experiments 1 and 2 are run on a Dell OptiPlex 3020 with Intel Core i5 and 8 GB of RAM, all other experiments use a
Dell OptiPlex 790 with Intel Core i7 and 16 GM of RAM (note that only a single processor core is used in all experiments).

6.1. Simulations in Dynamic Environments

Holonomic robot in a RP. The state space is a D-dimensional Euclidean space X C RP, and the workspace is equivalent
to the configuration space. The robot is Holonomic with arbitrary volume and boundary. In the case that the robot is a
point-robot than this reduces to case of geometric path-planning. We assuming that collision vs. obstacles is straightforward
to determine'?. This is arguably the simplest type of planning and 7 (v,) is a straight line between v and u. The distance
between two points =,y € X is defined as d(z,y) = Zi’;l(zi — y;)2, where z; is the coordinate of x with respect to
the i-th dimension. In this case the trajectory length function is equivalent to the distance function d (z,y) = d(z, y).

Examples of this type of environment include scenarios where:

1. Obstacles randomly appear and disappear vs. time.
2. An inaccurate map of the world is provided and obstacles “disappear” or “appear” (i.e., from the robot’s point of view)

as their absence or existence is discovered via a ranged sensor.

Videos showing simulations in both of these situations are available at: Otte (2014).

Holonomic robot in RP x T. This is similar to the scenario described in the previous section except for the addition of a
time dimension T to the state space, i.e., X C RP x T. We follow the recommendation of LaValle (2006) about how to

handle distance in a state space that is a Cartesian product of subspaces. In particular, distance from v to u, given v, u € X

is defined d(z, y) = \/ct(vt —ug)? + Zil (v; — u;)2, where z; is the time coordinate of x and x; is the coordinate of z
with respect to the i-th dimension for ¢ such that 1 < ¢ < D. The user defined constant ¢; determines the importance of
time vs. space distance (note the trade-off is non-linear). The trajectory length function is similar except that it accounts
for the fact that time moves forward:

d.(z.1) d(z,y) ifv <uy
s 1’7 y = *
0 otherwise

131n practice we can locate all graph edges in conflict with a particular obstacle in two steps: (1) First finding the set Vo of all nodes that are within a
distance c of the obstacle center, where ¢ = crobot + Cobstacle T Cedge and Where ¢;.opot and Copstacie are radii of the smallest D-Ball that contain the
robot and obstacle, respectively, and ccqg4. is the length of the largest edge in E. (2) examine all edges (v, u) such that either v € Vijp5e 0r u € Vepge-
This is easy to do by examining the neighbor sets of all nodes in Ve

22 Journal name ()

It is often realistic to bound the robot velocity at §2,ax, in which case d.(x,y) = co unless y is in the reachibility cone

dr(z,y) = d(z,y) if (Ut — V)0 T max > \/m

00 otherwise

of z, i.e.,

If a minimum speed is also defined then there is a second cone within the first representing more points that cannot be
reached.

To maintain the graph connectivity guarantees introduced by RRT*, the size of the shrinking the D-Ball needs to be
adjusted to account for the fact that only a subset of its original space can be reached.

If an estimate of obstacles motion exists (i.e., based on current trajectory or past behavior) than space-time obstacles
are defined by sweeping space obstacles along their estimated path in the time dimension. A simple model may assume,
for instance, an obstacle will move along its current heading forever; thus creating volume in space-time. In the latter
case, space-time obstacles are adjusted only if/when they deviate from their predicted behavior. Uncertainty about obstacle
movement can be modeled by expanding the size of the obstacle vs. time. When a model of obstacle behavior does not
exist, then we assume that it remains stationary, i.e., the time-obstacle is a cylinder with its longitudinal access parallel to
the time dimension.

For practicality we must impose time bounds on X. We have also found it useful to insert a number of points at the
spatial goal location at incremental values of time, and then define that each of these points is distance O to an abstract
notion of a goal. This allows the robot to arrive at the goal location early without incurring a time-based cost penalty.

Videos showing simulations in both of these situations are available at: Otte (2014).

Dubins model in R? x S'. The state space is defined X C R? x S!. The robot moves at a constant speed and has a

predefined minimum turning radius 7,;, LaValle (2006). Distance between two points z,y € X is defined d(z,y) =

\/ co(zo —yo)? + Z?:l (z; — yi)?, where xy is heading and z; is the coordinate of x with respect to the ith dimension of
R?2, and assuming the identity § = § + 27 is obeyed. The constant cy determines the cost trade-off between a difference in
location vs. heading. d(z,) is the length of the geodesic between z and y through R? x S!. d (x,) is the length of the
Dubins trajectory that moves the robot from x to y. In general, d (z,y) # d(z, y); however, by defining ¢y appropriately
(e.g., co = 1) we can guarantee d,(x,y) > d(z,y) so that d(z,y) is an admissible heuristic on d,(z,y). The nearest-

neighbor data structure must also account for the identity 8 = 6 + 27. A videos of this simulation appears at Otte (2014).

Extended Dubins model in R?> x S x T. The standard Dubins model does not work well when time is added as a dimension
in the state space. This is due to the fact that the set of potential neighbors for any given node v has measure 0 if the robot is
constrained to move at a constant speed. Therefore, we need to use an extended model in which the robot speed is allowed
to vary. In particular, we define speed bounds §zp,,x and dz,;, and allow instantaneous velocity change. This modifies the
connection set to exist as a positive measure subset of the reachibility cone that was discussed earlier (the shrinking ball
radius must be adjusted accordingly).

The distance between two points z,y € X is defined as

d(z,y) = \/ct(a:t —ye)2 + co(zg —yo)? + Zi’;l(a:i — y;)? and represents the length of the straight line between x and
y through R? x S x T. As in the normal Dubins case described in the previous section, this straight line through the state
space is not followed by the robot, in general; thus, d,(z,y) # d(z,y).

Let d24" . (2, y) be the space-time distance along 7 (x, y), and let d34" o, (, y) be the distance along the projection

of 7(x,y) onto R? x S!. We define d (z, y) as the distance along the space-time Dubins curve (unless velocity constraints

RRTX 23

40.0 sec . . 49.8

Fig. 7. (Extended) Dubins robot using RRT* to move from start to goal (white square) while repairing its shortest-path tree vs. moving
obstacle changes. Color paths show the planned position of the robot and the estimated positions of the obstacles with respect to the
robot’s time-to-goal. The path executed by the robot is black with hatch marks. Moving obstacles are dark gray. Time (in seconds)
appears above each sub-figure (Note the robot begins moving at 40 seconds). See http://tinyurl.com/153gzgd for video.

prevent the robot from following d (z, y)).

. dﬁiRgl;Sl XT(xa y) if (ut - Ut)(sxmin S dﬁggsl (ZL‘, y) S (ut - 'Ut)(;xmax
dﬂ" (ZL’, y) - .
00 otherwise

As in the normal Dubins case, it is convenient to define the distance scaling constants such that d(x, y) returns a reasonable
set of nodes with respect to d (z, y).

Figure 7 shows a simulation of this vehicle in a dynamic environment with moving obstacles. A videos of this simulation
also appears at (Otte, 2014).

3rd-Order Thruster in R3 x Rgm Jar % T. An axis aligned thruster vehicle controls velocity and position using six thrusters
that point in the positive and negative directions along each axis and produce constant acceleration a. when fired (affects on
vehicle mass are assumed negligible). The state space used for planning consists of three dimensions of position R2, three
dimensions of velocity ng Jae and one dimension of time T for a total of seven dimensions. Velocities dx/dt € ng Jdt
are the derivatives of positions = € R2 with respect to time T.

Let x = [z, %, t] € R3 x Rgm Jar X T be a point in the vehicle’s state-space. The steering function for this system is
calculated by solving the system of differential equations for the time parameterized control inputs u(x1, x2) between two

. 2
points x; and x3) as a function of starting and ending velocities, positions, and times u(x1,x2) = ?173‘ = f(x1,x%2).

24 Journal name ()

The trajectory associated with edge is calculated once, when that edges is inserted into the graph (edges without a
solution are not added to the graph). As in previous sections, d . (x1, X2) is defined by the state-space length of the trajectory,
calculated using numerical integration, and scaling constants are defined such that d(x;,x2) returns a reasonable set of
nodes with respect d (x1,X2).

Videos of this simulation, as well as a similar system in R2 x Rflz Jdt % T appears at (Otte, 2014).

Cartesian Products of R%, S?, SO(c), and T Using RRTX in many other higher dimensional spaces will likely follow the

pattern of considerations that has been established above. In general, one needs to:

* Define d(z, y) such that the it is easy to do proximity queries on X’.

* Define d,(z,y) as the distance that the robot actually follows along 7(x, y).

o Itis helpful if d(z, y) is defined such that it provides a useful potential neighbor set of nodes with respect to d (z, y)
(the shrinking ball radius must be modified accordingly).

+ Additional constraints on d(z,y) are imposed by the fact that T must move forward as well as any minimum or
maximum constraints on velocity, etc.

e RRTX (and all sampling-based motion planning algorithms) the family of possible trajectories must be such that from
almost all z € X the set of reachable points has non-zero measure . ({y : 3d,(z,y) < oo}) > 0. This especially

an issue when T is concerned.

Previous work (LaValle, 2006; Bialkowski, 2014) indicates that all sampling-based motion planning algorithms, including
RRTX, can be used for Cartesian products of R?, S°, and SO(c). Following the above considerations allows RRTX to be
used with Cartesian products of R, S?, SO(c), and T.

Handling Dynamics (e.g., dR?, dS”, dSO(c)) involves steering functions that require more complicated two-boundary
value problems to be solved. In the most general case numerical solutions can be used (e.g., shooting methods), which
may necessitate the use of more powerful computing resources. That said, some problems may be impossible to solve with
RRTX given the current state of computing technology (these situations are currently addressed using different classes
of algorithms that either allow offline computation and/or trade asymptotic optimality and probabilistic completeness for

resolution optimality/completeness, see Section 2).

6.2. Experiments

Experiment 1: Performance in randomly generated environments with moving obstacles Using the extended Dubins vehicle,
we compare RRTX to DRRT and RRT (i.e., placing RRT inside a control loop) in randomly generated environments. 10
environments are randomly generated for each possible combination of obstacle density {.01,.05,.10, .15, .20, .25} and
obstacle speed {0, 5,10, 15, 20, 25, 30, 35,40}. Each environment is used in two trials, for a total of 20 runs per each
combination of density and speed.

The robot has a radius of 2, Dubins turning radius is 2, and is allowed forward velocity on [10, 25]. Environments
measure 100 by 100. Obstacles are circular with radius 5. Obstacle movement iterates along a random heading (chosen
uniformly on [0, 27]) for a random distance (chosen uniformly on [0, ¢], where ¢ is the diameter of the workspace).
Obstacles that touch the workspace boundary are reflected and continue moving along the reflection heading. Obstacle
density is defined by the total obstacle volume divided by total volume of the workspace (rounded up to an integer value).
If a robot collides with an obstacle then the trial ends in failure and path length is defined to be 800 (which is larger than
any successful run). Obstacles do not interact with each other. Results appear in Figure 8.

Experiment 2: 3rd-Order Thruster Vehicle in Dynamic Environment Using the extended 3rd-Order vehicle, we compare

the performance of RRTX using € = {1072, 107, 10°, 10!} in a dynamic forest environment where trees randomly appear

RRTX 25

Extended Dubins Vehicle Performance Comparison in Random Dynamic Environments with Moving Obstacles

Success Rate Length Traveled Relative Length vs RRTX

800
700
600
500
RRTX

400

300

200

Obstacle Density (% volume)
3
Obstacle Density (% volume)
N
o

Obstacle Density (% volume)

0 10 20 30 40
Obstacle Speed (m/s)

0 10 20 30 40
Obstacle Speed (m/s)

800
700
600
DRRT

500

400

300

Obstacle Density (% volume)
Obstacle Density (% volume)

200
0 10 20 30 40 0 10 20 30 40

Obstacle Speed (m/s) Obstacle Speed (m/s)

RRT
(restarts)

Obstacle Density (% volume)
Obstacle Density (% volume)

0 10 20 30 40 0 10 20 30 40
Obstacle Speed (m/s) Obstacle Speed (m/s)

Obstacle Density (% volume)

Obstacle Density (% volume)

N
o

10

20

15

10

20

0

10 20 30
Obstacle Speed (m/s)

40

0

10 20 30
Obstacle Speed (m/s)

40

0

10 20 30
Obstacle Speed (m/s)

40

18

1.6

1.4

12

0.8

18

16

14

12

0.8

1.8

16

1.4

1.2

0.8

Fig. 8. Success rates and average path lengths vs. obstacle speed and density. 20 trials per datapoint for extended dubins vehicle
performance comparison in random dynamic environments with moving obstacles

and disappear. The environment is randomly generated and contains 20 trees of radii 5, each tree is given 1/3 probability a
priori of appearing, disappearing or doing nothing when the robot comes within sensor range (20). The robot has a radius
of 2, and an acceleration of 2 along each axis, and a maximum velocity magnitude of 20 along each axis. The environment
measures 100 x 100 x 20 (length, width, height), and the robot must travel from [20, 20, 0] to [80, 80, 0], starting and ending
at rest. Results appear in Figure 9.

Experiment 3: Information propagation starting at time t. We compare the performance of RRTX, RRT#, and RRT* when
a shortcut through the environment is found at a particular time ¢. This illustrates the relative effects of graph e-consistency,
consistency, vs. lazy cost propagation on cost propagation speed14.

We assume the robot is a Holonomic first-order system and the environment contains two long obstacles with a small
gap between them (see Figure 10). In order to guarantee that all three algorithms discover the shortcut at the same time,

we define that the shortcut contains an obstacle for the first £ = 10 seconds of planning (but not after), and the first sample

14i.e., how quickly (and to what extent) knowledge of an attraction basin shift spreads through the search tree and thus informs the robot’s motion plan

26 Journal name ()

3rd-Order Thruster Vehicle using RRTX with various € Value

RRTX Path Length vs. € values Top-Down View of Workspace
— 100
250 |] <
< l T 80 1) O O x
2 \
& 200f — —] o
a I |
E * OO O (% (tree height = 20)
&] 4
150 e . #) CD
L 20 o
0.01 0.1 1.0 10 @ O O CS:
€ value for RRT®) 0 40 0 80 100

Fig. 9. Left: Results of 3rd-Order thruster vehicle using RRTX with various e values in a randomly generated dynamic forest environment
with appearing and disappearing trees. Box-plots are for 10 runs of data per € value. Right: Workspace of the forest environment, robot
must start at the square and reach the X. Note that the state space used for planning is 7-dimensional; additionally containing height,
velocity, and time; the robot can only directly control thrust.

after ¢ is explicitly drawn from the center of the gap (all other samples are drawn uniformly at random). The experiment
is halted after 60 seconds. Forcing the shortcut to be found at ¢ eliminates one source of variability without compromising
the comparison between the random sampling-based algorithms.

Figure 11 shows mean solution lengths and graph sizes over 50 trials. For RRTX we set ¢ to be 0.5. Results are depicted

in. A video of this experiment is accessible online at (Otte, 2014).

Experiment 4: Information propagation starting at iteration 1. In the previous experiment (i.e., Experiment 1) all three
algorithms discovered the shortcut at the same time—a scenario that is representative of planning in a dynamic environment
when an obstacle disappears. This experiment (i.e., Experiment 2) is similar, except that we remove the obstacle and sample
the shortcut at iteration ¢ = 6000. This is more representative of planning in a static environment (where the expected time
to sample from within the bottleneck is a function of the number of samples that are drawn).

Although RRT* and RRTX both have iteration time O (logn), the constant factor associated with RRT* is less than
that of RRTX. The experiment is halted after 60 seconds of planning. Results appear in Figure 12, and represent the mean
over 50 trials.

Experiment 5: Information transfer time. We evaluate the time it takes to propagate new data about the environment
through the graph with RRTX, RRT#, and RRT*. We use the same environment as in Experiments 3 and 4 (i.e., Figure 10),
and record the duration between the time when the shortcut is removed/sampled and the time the best-path adjusts to utilize
the shortcut. Results appear in Figure 13.

7. Discussion

7.1. RRTY in Dynamic Environments

RRTX is the first asymptotically optimal sampling-based motion planning designed for kinodynamic replanning in envi-
ronments with unpredictably changing obstacles. Analysis shows that the amortized time required to add a new node
is © (logn), assuming a graph with n nodes, and that handling obstacle changes requires a rewiring cascade that takes
O (nlogn) time.

Simulations in Section 6.1 show that RRT* produces effective real-time navigation in many different dynamic environ-

ments, and for state spaces X for which time T is a dimension, and/or while respecting robot kinematics in state spaces that

RRTX 27

Information Transfer after a Shortcut is Discovered at Time = 10 sec

X
RRT RRT# RRT*
RRT" RRT# RRT*
116,507 115.757 119.902
120 120 120
o 100 a 100 100
(@) NG L
— 80 K O\
- = NI = v
" 60 G \
X ;
(V) 40 / {
E 20
i
0 0 0
-40-30 20 -10 0 10 20 30 40
RRT*
) 119.902
120 120 120
— T
= 100 , N DUENA 100 100
o @Y, N a0y
— A J NP]
.. 80 BTN s g A T &
O A SACHER /;‘,: 3 ”
QoA d
60 e e L 60
S \
57, IR
(5 Qe
())
40 (4) 40
£ g
= 20 j 20
/]
A
0 0 0
-40-30 -20-10 0 10 20 30 40 -40-30 -20-10 0 10 20 30 40 -40-30-20-10 0 10 20 30 40
RRT*
} 117.429
120 120 120
A NI
(@) 100 Z X7 100 100
- CE AL 76
o VPSR ot ,,,,Z;
A XA
A ® S e ®
X :
(@) (RS ¢ { ,
60 = —— - 5 60
[WOTS e
/S \
; 1
g 40 40
E 20 ¥ 20
= 0 0 0
40 -30 20 -10 0 10 20 30 40 —40-30 20 -10 0 10 20 30 40 -40-30 20 -10 0 10 20 30 40
RRT*
93.266
120
o 100
o
(@)
—
(&)

-40-30-20-10 O 10 20 30 40 -40-30-20-10 O 10 20 30 40 -40-30-20 -10 0 10 20 30 40

Fig. 10. RRT*, RRT#, and RRT* (left to right, respectively) at different times (top to bottom), in a scenario where a shortcut is discovered
at time 10 seconds. Color and black topo-lines show cost-to-goal. White circle and square are the start and goal states, respectively. The
wall obstacle is also white. Paths are white with black outline and the search tree is gray. Path length appears at the top of each sub-figure.
RRTX and RRT# maintain graph consistency, allowing them to react to the shortcut more quickly than RRT*. A video of this experiment
is available online at http://tinyurl.com/153gzgd

solution length (m)

solution length (m)

28 Journal name ()

RRTX vs. Other Methods RRTX with Different ¢ Values
Shortcut found at 10s x10° Shortcut found at 10s Shortcut found at 10s x10° Shortcut found at 10s
16! 25 . . : : . 16 25 ; ; ; "
X
150 <1l RRT 1500 RRTX € value| RRTX € value
RRT - = = RRT# 001
140 - - =RRT# || 2[| —— RRT* 1 140t ———01 2 0.01
— RRT —— DRR — <10 ---o1
130r —&— DRRT || A— RRT E 130 : X— 1.0
o 15 / * < 10 @ 151 =10
/A~ RRT N =) N - N T
; o £ 120 optimal || &
"""" optimal s k) s
g 5 g
5 1 £ 110 5 1
’ S
y ? 100
05/, 90l 05
/ 80¢ L
‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50
Time (s) Time (s) Time (s) Time (s)

Fig. 11. Comparison of path length (Left) and graph size (right) vs. time, when a shortcut through a wall-like obstacle is discovered at
10 seconds. Graph consistency and graph e-consistency allows RRT* and RRT* to react more quickly than RRT*, which does not use
consistency, even despite the latter having more nodes. The length of the optimal path is also depicted (dashed-line, Left).

60

RRTX vs. Other Methods RRTX with Different ¢ Values
16 Shortcut at iteration 6000 a5 x 10" Shortcut at iteration 6000 16 Shortcut at iteration 6000 a5 x 10° Shortcut at iteration 6000
© X
150 <1l RRT 1500 RRTX € value| RRTX € value
RRT - = = RRT# 001
140 - - =RRT# || 2[| —— RRT* 1 140t ———01 2 oot
— RRT =&— DRRT — - -==0.
—o— DRRT |] A— RRT E 130 _>’<_ 160 X— 1.0
A— RRT © 15 7 £ 10 o 15—+ 10
- I 2 ook S optimal || &
"""" optimal s K} s
g 5 g
5 1 g uo 5 1
[=}
? 100
05 o0l 0.5
* f
/ 80¢
‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50
Time (s) Time (s) Time (s) Time (s)

Fig. 12. Comparison of path length (Left) and graph size (right) vs. time, when a shortcut through a wall-like obstacle is discovered at
iteration 6000. While RRT*’s faster iteration time enable it to find the shortcut more quickly that RRT* and RRT*, graph consistency
and graph e-consistency allows RRT* and RRTX to react more quickly than RRT*. The length of the optimal path is also depicted,
dashed-line (Left); as are the mean times corresponding to iteration 6000 (circles). Note, at iteration 6000 there are less than 6000 nodes
in the graph.

are non-euclidean. The benefits of using an asymptotically optimal algorithm instead of a feasible algorithm are clearly
demonstrated in Experiments 1, 3, and 4, where RRT* achieves much shorter paths than DRRT and RRT without sacrificing
success rate.

When time is included in the state space, then RRT* can improve path quality by estimating the trajectories of moving
obstacles. The replanning problem assumes myopia; thus, it is impossible for RRTX to avoid collisions with obstacles that
appear suddenly and/or move significantly faster than the robot. This limitation is faced by all replanning algorithms, and
by any agent that must make decisions given incomplete information about the world. However, the use of ¢, as well as
neighbor-pruning, enables RRTX to quickly react to changing obstacles. For example, quick iteration times allows RRTX
to start repairing its plan soon after a change is detected, and quick information transfer time allows that repair to happen
quickly. These are the primary advantages of RRTX over other possible replanning formulations of asymptotically optimal

sampling-based methods. Both theoretical analysis and experimental results support this claim.

60

RRTX 29

Information Transfer Time after Discovering Shortcut

X . . .
RRT? vs. Other Algorithms RRTX With Different € Values
Information Transfer Time x 10 Information Transfer Time x 10 Information Transfer Time
10 8 8
RRT \ RRT 8-01
-=-01
2 || = = = RRT# I - = = RRT#
10 RRT 7.5 1 7.5 10
“““ 10
£ 10° E 7 E 7
[[[
£ £ £
T C 65 C 65
2 2 2 '
17} 7] 7] 1
c c c 1
© _, © © 1
= 10 6 = 6)
AN :
-6 -8 N 3 3
10 ——— e 55 55 SR C= A \
> N\
1078 0 1 2 3 5 0 1 2 3 5 0 1 2 3
10 10 10 10 10 10 10 10 10 10 10 10
Run Time (s) Run Time (s) Run Time (s)

Fig. 13. The time that it takes to propagate new information about the environment to the robot’s position with RRT*, RRT*, and RRT*
(colors) when a bottleneck is detected at a variety of planning times (x axis). Each datapoint represents the mean results over 30 trials.
Left depicts all three algorithms on a logarithmic scale, Right shows a close up of RRT* and RRT*. The environment that is used appears
in Figure 10.

7.2. RRTX in Static Environments

Although RRTX is designed primarily for use in dynamic environments, both analysis and experiments shows that it is also
competitive with all state-of-the-art asymptotically optimal single-query motion planning algorithms. RRTX has the same
order expected runtime as RRT and RRT*, and is theoretically quicker than RRT#. RRTX inherits probabilistic completeness
and asymptotic optimality from RRT*. By maintaining a e-consistent graph, RRT* has similar behavior to RRT* for cost
changes larger than €; which translates into faster convergence than RRT* in practice.

The two major differences between RRTX and RRT* in static environments are: (1) RRTX’s use of ¢ to maintain e-
consistency vs. the full consistency maintained by RRT#. (2) active maintenance of the neighborhood size that causes each
node to have a roughly constant sized neighborhood in RRTX vs. the increasing neighborhood size of RRT* (i.e., because
old nodes retain their original neighbors, plus any new nodes for which they are within the shrinking hyperball).

RRTX only propagates e-cost decreases. Once all bottle-necks have been discovered and once 7 < ¢, where is the radius
of the shrinking D-Ball, then RRTX behaves similarly to RRT* (i.e., convergence rate is determined by lazy propagation).
Because reaction time is not a consideration in static environment, it may be advisable to use RRTX with € = 0 in static
environments. While this will increase RRTX’s expected runtime, it will still remain less than RRT*’s due to the former’s
maintenance of constant neighborhood size. That said, if planning time does not have a hard limit, then another alternative
(in static environments only) is to use RRT*-like lazy propagation for nearly the entire planning time (ensuring a large
number of nodes in the graph), and then running a single corrective cascade starting at vg,,1 With € = 0 to make the graph
fully consistent.

7.3. Information Transfer Time

Both analysis and Experiments 3-5 show that for e-cost decreases RRTX has O (n logn) information transfer time. This
is better than that of RRT* w (nlog” n) and also better than RRT* Q) (n(&)l/ b) For cost increase information RRTX
also has O (nlogn) transfer time, while RRT* and RRT* are not designed to handle cost increases.

The quick information transfer time of RRTX is one thing that enables it to perform well in dynamic environments. The
other factor is iteration time, which determines how long the algorithm expects to wait after a change happens and before it

is detected. When obstacles change, the expected reaction time of the algorithm is essentially the information transfer time

30 Journal name ()

plus one-half of the iteration time. However, for RRTX, information transfer time is likely to be much larger than iteration

time (note that the two are identical for RRT*), and therefore represents most of the reaction time of RRTX.

7.4. Graph Consistency and e-Consistency

We verify experimentally and analytically the result by RRT* that maintaining graph consistency increases the rate of
convergence toward an optimal solution. That said, we also find that for real-time motion replanning problems, maintaining

an e-consistent graph allows quicker reaction time to “important” changes.

7.5. Choosing ¢

The consistency parameter € allows RRTX to focus effort on propagating information changes that are critical for safe real-
time navigation, while ignoring those that do not significantly affect the motion plan. e must be greater than 0 to guarantee
O (logn) expected iteration time. In general, using smaller € causes graphs to be more consistent, but also decreases the
number of nodes that can be added to the graph within a particular amount of time. Experiments 2-5 demonstrate that
RRTX is relatively insensitive to e. Different e values have little effect on graph size or the transfer of information > e.
The most noticeable effect is that smaller € values improve short-term convergence rates in static environments (i.e., when
maintenance rewiring causes cost changes < €).

In dynamic environments, € should be small enough such that a rewiring cascade is triggered whenever obstacle changes
require a course correction by the robot. For example, in a Euclidean space (and assuming the robot’s position is defined as
its center point) we suggest using an € no larger than 1/2 the robot width. Alternatively, if a safety distance dsa¢. is defined

(i.e., the robot is not allowed to come within dgag. of an obstacle), then € < dgaz./2 is advisable.

7.6. Neighborhood Size

Culling neighbors to keep neighborhood size O (log n) in expectation is another necessity to maintain an © (log n) expected
per iteration runtime. While we have investigated retaining neighbors within in the current paper, other culling strategies
may be able to increase the utility of sampling-based algorithms in special cases. This topic is beyond the scope of the

current paper.

8. Summary and Conclusions

We present RRTX, the first asymptotically optimal single-query sampling-based replanning algorithm. In other words,
RRTX is designed to improve its solution during movement, react quickly when the environment changes, and to be used
when a priori offline computation is unavailable.

RRTX uses the same search tree for the duration of navigation, continually refining it and repairing it as changes
to the state space are detected. The resulting motion plans are both valid, with respect to the dynamics of the robot, and
asymptotically optimal with respect to the current obstacle configuration, i.e., in static environments. Analysis, simulations,
and experiments show that RRTX works well in both static and dynamic environments.

RRTX achieves a quick reaction time in dynamic environments by maintaining an e-consistent graph, constant
neighborhood size at each node, and then using rewiring cascades to transfer information through the graph whenever
obstacles change. For changes larger than e, RRTX has O (n logn) information transfer time, which is quicker than other
sampling-based motion planning algorithms, i.e., RRT* (2 (n(%)l/ b) and RRT* w (n log? n)

RRTX

31

Algorithm 7: shrinkingBallRadius(|V])

1/D
: o log|V]
1returnm1n{(<D]) ,5}

Algorithm 8: updateObstacles()

1if 3O : O € O A O has vanished then
2 | forallthe O : O € O A O has vanished do
3 L removeObstacle(O) ;

4 | reducelnconsistency();

5if 3O : O € O A O has appeared then
6 | forallthe O : O & O A O has appeared do
7 L addNewObstacle(O) ;

8 | propogateDescendants() ;
9 | verrifyQueue(vhot) ;
10 | reduceInconsistency();

Algorithm 9: propogateDescendants()

1 forall the v € V.7 do

2 L VE— VEUCT(v) 5
3 forall the v € V7 do

4 | forall the uw € (N (v) U{pF(v)})\ V¥ do
5 g(u) ¢ 00

6 L verrifyQueue(u) ;

forall the v € V7 do

s | Ve VE\ {u)

9 | gv)+ c0;

10 | lmc(v) < 00;

1 | if pT(v) # 0 then

12 L CT(pF(v)) + C7(p7(v) \ {v};
13 p}"—(v) —0

=

9. Acknowledgments

This work was supported by U.S. Department of Defense-Air Force Office of Scientific Research #FA-8650-07-2-3744,
U.S. Department of Defense-Office of Naval Research MURI grant #N00014-09-1-1051, and by the Control Science Center

of Excellence at the Air Force Research Laboratory (AFRL).

A. Minor Subroutines

Minor subroutines appear in Algorithms 7-14. The functionality of shrinkingBallRadius(|V'|) was introduced in the

RRT* algorithm, and returns the radius of B, the shrinking D-Ball, such that B is expected to contain a number of nodes

proportional to «y (at least, once B shrinks such that its radius is less than the RRT-like steering saturation distance 4), both -y

and § are user defined parameters, Karaman and Frazzoli (2011) recommend using v > 2P (1 + 1/D).% (Xjree) to ensure

a connected graph, where the volume of the free space, .Z (Xpee), is usually estimated in practice. {p is the volume of a

unit D-Ball.

32 Journal name ()

Algorithm 10: verrifyOrphan(v)

1 if v € Q then remove(Q,v);
2 Vi VEU{v};

Algorithm 11: removeObstacle(O)

1 Eo +{(v,u) € E:m(v,u)NO #0};

20+ 0\{0};

3 FEo « FEo\{(v,u) € E:m(v,u) NO" # () for some O’ € O} ;
4 Vo« {v:(v,u) € Eo};

5 forall the v € V, do

6 | forallthe u: (v,u) € Ep do

7 L dy (v, u) < recalculate d (v, u) ;

updateLMC(v) ;
if 1mc(v) # g(v) then verrifyQueue(v)

o e

Algorithm 12: addNewObstacle(O)

10+ 0U{0};

2 Eo + {(v,u) € E:7m(v,u)NO # 0}

3 forall the (v, u) € Ep do

4 | dr(v,u) < oc0;

s | if pX(v) = u then verrifyOrphan(v);
6 | if vpoy € m(v,u) then mhoy = 0 ;

Algorithm 13: verrifyQueue(v)

1 if v € Q then update(Q,v) ;
2 else add(Q,v) ;

Algorithm 14: updateLMC(v)

1 cullNeighbors(v,r) ;

2 forall the w € NT(v) \ V£ : pt(u) # vdo
3 | if Imc(v) > dr(v,u) + 1mc(u) then

4 L | P s

5 makeParent0f(p’, v)

B. Additional Background on RRT* and RRT*

This section contains additional background on RRT* (Karaman and Frazzoli, 2011) and RRT* (Arslan and Tsiotras, 2013).
The overarching difference between these algorithm and RRTX is that RRTX is a shortest-path replanning algorithm while
RRT* and RRT* are shortest-path planning algorithms.

Pseudocode for RRT* and RRT* appear side-by-side in Algorithms 15 and 16, respectively, while subroutines differing
significantly from those used by RRTX appear in Algorithms 16-19. We continue to use notation consistent with a directed
graph implementation to facilitate comparison with RRTX as presented in the current paper.

The stopping criteria for RRT* and RRT* are user defined; common choices include: (1) a time-out, (2) a predefined

number of nodes sampled, or (3) a predefined number of nodes added to the search-tree/graph. Both RRT* and RRT*

RRTX 33

Algorithm 16: RRT* (X', S)

1V {vgoar} ;
2 while stopping criteria not met do
3 | 7« shrinkingBallRadius(|V]);

Algorithm 15: RRT*(X, S)

1V {vgoar} ;
2 while stopping criteria not met do
3 | r + shrinkingBallRadius(|V]);

4 | v+ randomNode(S); 4 | v < randomNode(S5) ;
: 5 Unearest $— nearest(v) ;
it t ;)
z ;}fnza(rzbtv nea;ris(s S}lln 6 | if d(v, Vnearest) > O then
» Unearest)
7 L v < saturate(v, Unearest) ; 7 L v < saturate(v, Unearest) i
8 | if v & X, then

8 | if v & X5 then
9 L Viear < extendStar(v,r) ;

10 | if v € V then
11 L rewireNeighborsStar(v, Viear) ;

9 L extend(v,r) ;

10 | if v € V then
u rewireNeighborsSharp(v) ;
12 reducelnconsistency() ;

Algorithm 18: rewireNeighborsSharp(v)

Algorithm 17: rewireNeighborsStar (v, Vyear) if gfg)qi')alit:-lzz(ve) ;\l;e_lzv) \ {pE(0)} do
+

1
2
1 forall the u € V,,car \ {pF(v)} do 3 if Imc(u) > dr(u,v) + 1mc(v) then
2 | if g(u) > dr(u,v) +g(v) then 4 lme(u) < dr(u,v) + 1mc(v)
5
6
7

3 L g(u) < dx(u,v) +g(v) makeParent0f (v, u) ;
4 makeParentOf (v, u) ; if g(u) > 1mc(u) then
L verrifyQueue(u) ;

iteratively perform the following steps: update the shrinking ball radius (line 3), sample a new node v (line 4), find its
nearest neighbor (line 5), perform an RRT-like steering/saturation to resample v if the original v is further than ¢ from its
nearest neighbor (lines 6-7), collision check v (line 8), extend the search-graph to include v (line 9, which includes trajectory
collision checking), and then rewire neighbors of v to use v as their parent if doing so is advantageous (line 11). RRT*
additionally propagates any potential improvement throughout the entire search-graph (line 12) in case the advantages of
traveling through v can benefit other nodes further leafward.

A significant difference between RRT* and RRT* is that the former maintains only a shortest-path-tree, while the
latter maintains both a search-graph and a shortest-path tree (note that RRTX also maintains both graph and tree). This
has ramifications for the implementation details of graph extension and neighbor rewiring. Rewiring subroutines appear
in Algorithms 17 and 18, respectively. The graph extension subroutine used by RRT* appears in Algorithm 19. RRT*
uses the same extend(v, r) and reduceInconsistency() subroutines as RRTX (although the rewiring subroutine within
extend(v, r) is replaced by the RRT version that appears in Algorithm 18). The other subroutines involved in RRT* and
RRT* are identical to those of the same name used for RRTX, except that RRT* does not use 1mc(v), i.e., cost-to-goal via

neighbor values, and instead works directly with g(v), i.e., cost-to-goal values.

References

Arslan, O. and Tsiotras, P. (2013). Use of relaxation methods in sampling-based algorithms for optimal motion planning. In Robotics
and Automation (ICRA), 2013 IEEE International Conference on, pages 2421-2428. IEEE.

Bekris, K. E. and Kavraki, L. E. (2007). Greedy but safe replanning under kinodynamic constraints. In Robotics and Automation, 2007
IEEE International Conference on, pages 704-710.

34 Journal name ()

Algorithm 19: extendStar(v,)

1 Vyear < near(v,r) ;

2 findParent (v, Vyear)
3 if pT-(v) = () then

4 L return 0 ;

sV« VU{v};

6 return V.., ;

Bertola, A. and Gonzalez, L. F. (2013). Adaptive dynamic path re-planning rrt algorithms with game theory for UAVs. In 15th Australian
International Aerospace Congress (AIACIS).

Bialkowski, J. (2014). Optimizations for Sampling-Based Motion Planning Algorithms. PhD thesis, Massachusetts Institute of Technology.

Bohlin, R. and Kavraki, L. E. (2000). Path planning using Lazy PRM. In Robotics and Automation, 2000. Proceedings. ICRA "00. IEEE
International Conference on, volume 1, pages 521-528 vol.1.

Bruce, J. and Veloso, M. (2002). Real-time randomized path planning for robot navigation. In IEEE Conference of Automation Science
and Engineering. IEEE.

Ferguson, D., Kalra, N., and Stentz, A. (2006). Replanning with RRTs. In Robotics and Automation (ICRA), IEEE International
Conference on. IEEE.

Fraichard, T. and Asama, H. (2003). Inevitable collision states. a step towards safer robots? In Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, volume 1, pages 388-393 vol.1.

Frazzoli, E., Dahleh, M. A., and Feron, E. (2005). Maneuver-based motion planning for nonlinear systems with symmetries. Robotics,
IEEE Transactions on, 21(6):1077-1091.

Gayle, R., Klinger, K. R., and Xavier, P. G. (2007). Lazy reconfigurattion forest (LRF) — an approach for motion planning with multiple
tasks in dynamic environments. In Robotics and Automation (ICRA), IEEE International Conference on. IEEE.

Hauser, K. (2012). On responsiveness, safety, and completeness in real-time motion planning. Autonomous Robots, 32(1):35-48.

Hsu, D., Kindel, R., Latombe, J.-C., and Rock, S. (2002). Randomized kinodynamic motion planning with moving obstacles. The
International Journal of Robotics Research, 21(3):233-255.

Kaelbling, L. P. and Lozano-Perez, T. (2011). Hierarchical task and motion planning in the now. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 1470-1477.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. Int. Journal of Robotics Research,
30(7):846-894.

Kavraki, L., Svestka, P., Latombe, J., and Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE transactions on Robotics and Automation.

Knepper, R. A. and Mason, M. T. (2012). Real-time informed path sampling for motion planning search. The International Journal of
Robotics Research, 31(11):1231-1250.

Koenig, S., Likhachev, M., and Furcy, D. (2002). D* lite. In Proceedings of the Eighteenth National Conference on Artificial Intelligence,
pages 476-483.

Koenig, S., Likhachev, M., and Furcy, D. (2004). Lifelong planning A*. Artificial Intelligence Journal, 155(1-2):93-146.

Kushleyev, A. and Likhachev, M. (2009). Time-bounded lattice for efficient planning in dynamic environments. In Robotics and
Automation, 2009. ICRA "09. IEEE International Conference on, pages 1662—1668.

Kuwata, Y., Karaman, S., Teo, J., Frazzoli, E., How, J., and Fiore, G. (2009). Real-time motion planning with applications to autonomous
urban driving. Control Systems Technology, IEEE Transactions on, 17(5):1105-1118.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press.

LaValle, S. M. and Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, 20(5):378-400.

LaValle, S. M. and Lindemann, S. (2009). Simple and efficient algorithms for computing smooth, collision-free feedback laws over given

RRTX 35

cell decompositions. The International Journal of Robotics Research, 28(5):600-621.

Leven, P. and Hutchinson, S. (2001). Algorithmic and computational robotics: New directions. In Donald, B., Lynch, K., and Rus, D.,
editors, Algorithmic and Computational Robotics: New Directions 2000 WAFR. AK Peters/CRC Press.

Leven, P. and Hutchinson, S. (2002). A framework for real-time path planning in changing environments. The International Journal of
Robotics Research, 21(12):999-1030.

Likhachev, M. and Ferguson, D. (2009). Planning long dynamically feasible maneuvers for autonomous vehicles. The International
Journal of Robotics Research, 28(8):933-945.

Marble, J. D. and Bekris, K. E. (2013). Asymptotically near-optimal planning with probabilistic roadmap spanners. /[EEE Transactions
on Robotics, 29(2):432-444.

Martin, S. R., Wright, S. E., and Sheppard, J. W. (2007). Offline and online evolutionary bidirectional RRT algorithms for efficient
re-planning in dynamic environments. In IEEE Conference of Automation Science and Engineering. IEEE.

Otte, M. (2011). Any-Com Multi-Robot Path Planning. PhD thesis, University of Colorado at Boulder, Dept. Computer Science.

Otte, M. (2014). Videos of RRT* simulations in various state spaces. http://tinyurl.com/153gzgd.

Otte, M. and Frazzoli, E. (2014). RRT*: Real-time motion planning/replanning for environments with unpredictable obstacles. In Proc.
International Workshop on the Algorithmic Foundations of Robotics.

Otte, M., Richardson, S. G., Mulligan, J., and Grudic, G. (2007). Local path planning in image space for autonomous robot navigation
in unstructured environments. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages
2819-2826. IEEE.

Pivtoraiko, M., Knepper, R. A., and Kelly, A. (2009). Differentially constrained mobile robot motion planning in state lattices. Journal
of Field Robotics, 26(3):308-333.

Plaku, E., Kavraki, L. E., and Vardi, M. Y. (2010). Motion planning with dynamics by a synergistic combination of layers of planning.
Robotics, IEEE Transactions on, 26(3):469-482.

Pomarlan, M. and Sucan, 1. A. (2013). Motion planning for manipulators in dynamically changing environments using real-time mapping
of free workspace. In Computational Intelligence and Informatics (CINTI), 2013 IEEE 14th International Symposium on, pages
483-487.

Reif, J. and Sharir, M. (1985). Motion planning in the presence of moving obstacles. In Foundations of Computer Science, 1985., 26th
Annual Symposium on, pages 144—154.

Rimon, E. and Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. Robotics and Automation, IEEE
Transactions on, 8(5):501-518.

Salzman, O. and Halperin, D. (2014). Asymptotically near-optimal RRT for fast, high-quality, motion planning. In Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pages 4680—4685.

Salzman, O., Shaharabani, D., Agarwal, P. K., and Halperin, D. (2014). Sparsification of motion-planning roadmaps by edge contraction.
The International Journal of Robotics Research, 33(14):1711-1725.

Sermanet, P., Scoffier, M., Crudele, C., Muller, U., and LeCun, Y. (2008). Learning maneuver dictionaries for ground robot planning. In
Proc. 39th International Symposium on Robotics (ISR’08S).

Stentz, A. (1995). The focussed D* algorithm for real-time replanning. In Proceedings of the International Joint Conference on Artificial
Intelligence.

Sugiyama, M., Kawano, Y., Niizuma, M., Takagaki, M., Tomizawa, M., and Degawa, S. (1994). Navigation system for an autonomous
vehicle with hierarchical map and planner. In Intelligent Vehicles’ 94 Symposium, Proceedings of the, pages 50-55. IEEE.

Tedrake, R., Manchester, I. R., Tobenkin, M., and Roberts, J. W. (2010). LQR-trees: Feedback motion planning via sums-of-squares
verification. The International Journal of Robotics Research, 29(8):1038-1052.

Wang, W., Balkcom, D., and Chakrabarti, A. (2015). A fast online spanner for roadmap construction. The International Journal of
Robotics Research.

Yang, Y. and Brock, O. (2010). Elastic roadmaps-motion generation for autonomous mobile manipulation. Autonomous Robots,

36 Journal name ()

28(1):113-130.
Zucker, M., Kuffner, J., and Branicky, M. (2007). Multipartite RRTs for rapid replanning in dynamic environments. In Robotics and
Automation (ICRA), IEEE International Conference on. IEEE.

