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Abstract— We propose and study thenavigation with foraging global goa! (pomt)T global goal (plane:) fr;,%r;(:ilé ‘;Tr'f{f;yy
problem, where an agent with a limited sensor range must /fora’e;,E_ -~ - T T~
simultaneously: (1) navigate to a global goal and (2) forage en , ~—P°™ "\ N L= Ve o N
route as opportunities to forage are detected. Each foraging , : = =<\ ‘:('izl ><
act causes a deviation from the shortest path to the long-term sensor range Sensor range

goal, with consequences for path length, mission duration, and

fuel usage. We analytically calculate and/or bound the expected Fig. 1. Greedy navigation with foraging algorithms. Lefte thgent forages
distance the robot actually travels, given the initial distance to the point with the heading nearest to that of the long-terbal goal. Right:
the the global goal. In particular, for either of two non-trivial the agent forages the closest point. The global goal caereith a point

greedy strategies: (A) forage the point that minimizes goal- (L€ft) or a plane (Right).
heading deviation. (B) forage the closest point ahead of the
robot. Our results generalize to problems in higher dimensions.
salvaging the floating cargo is also desirable.

In this paper we focus on quantifying the cumulative
effects of foraging on path lengthIn particular, we in-

We definenavigation with foragingas the hybrid problem vestigate two special cases of navigation with foraging:
in which an agent with a limited sensor range must Slmul('l) a|WayS forage the point that minimizes goa|-heading
taneously: (1) navigate to a global goal and (2) forage efleviation, (2) always forage the closest point that has a
route as opportunities to forage become available. Eacbfactpositive movement component vs. the goal. See Figure 1-
foraging increases the total distance that the robot masgeltr | eft and Right, respectively. These are the taan-trivial
(with obvious consequences to path length, mission duratiopyre-strategy extremes—i.e., they are respectively fatase
and fuel usage). The problem is non-trivial, assuming thakaching the long-term goal or foragimg much as possible
the agent simultaneously works to achieve both objectivegithout foregoing the other mission constraint
The cumulative acts of fulfilling many short-term foraging we model this scenario as a first-order continuous-space
objectives must result in the fulfillment of one long-termmarkov processes, and develop tools that allow us to solve
navigational objective, and the two objective types ocdur dor the expectation of the total distance traveled. All fotar

I. INTRODUCTION

significantly different time scales. . tions are derived with respect to arbitrary dimensionatityd
To further motivate the problem, we now describe severghus immediately generalize to higher dimensional spaces.
scenarios in which navigation with foraging occurs: To the best of our knowledge, we are the first to investigate

« Scientific Exploration a landing rover's mission in- navigation with foraging algorithms.
volves visiting a distant crater while sampling interest- This paper is organized as followSection Il contains
ing chemical/geological features that are detected aloragsurvey of related work. Section Ill contains the analysis
the way. of a single foraging act. Section IV considers foraging

« Combat an unmanned aircraft must visit a valuablewhile moving toward a boundary (e.g., a geopolitical border
target and then return to friendly territory, while alsoshoreline, etc.). Section V considers foraging while mgvin
eliminating hostile targets that are detected along thteward a point. Both IV and V contain theoretical and
way. experimental results related to the particular scenatiey t

« Search and Rescua rescue vessel (boat or helicopterjaddress. Conclusions are presented in Section VI.
must reach land before running out of fuel, but also
desires to rescue people along the way.

« Intelligence Gatheringa spy plane’s primary mission In [1] a predator-prey patch model is used to evaluate
is to photograph a known enemy installation and thewhich tasks an agent should perform, assuming tasks are
return to safety; however, it is also expected to photoencountered randomly within a patch (a bounded subset of
graph other unexpected enemy activity that it detectsthe environment), and the agent may move between patches.

« Salvage OperationgA sinking ship has jettisoned cargo Tasks are defined broadly, and are arguably analogous to
into the sea. The ship is the primary objective, buour forage points. The main theoretical contribution of [1]

Il. RELATED WORK

IMichael Otte and Emilio Frazzoli are with the The Laboratooy f 1Assuming constant speed, path length can be used to calthesagéfects
Information and Decision Systems, Massachusetts Institufechnology, of foraging on mission duration and fuel usage.
Cambridge, Massachusetts, US#, t enw@ri t . edu 2In contrastfrivial pure strategies involve ignoring one of the two mission
2Nikolaus Correll is with the Department of Computer Scienceiver-  requirements: (1) Move directly to the goal without foragirfg) Always
sity of Colorado at Boulder, Boulder, Colorado, USA. forage the closest point (which will reach the goal with @bttity 0).



is an analysis showing the subset of tasks that are expecféd = GreedyHeading(r, n, x:, &)

to maximize an agent’s long-term reward. There is no Iong—%z rIgt;nRandor?‘(“"W(fi))
. . . . . arg min i,7

term navigational objective, and tasks are ranked based ofi & bi,j €L A7

a predefined (and static) expected return on foraging effotti,» = GreedyProximity(r,n, z:, &:)

[2] explores a similar multi-agent scenario. In contrasflffo  1: L; = Random(r, n, x;, &)

and [2], we consider a navigation with foraging scenario,2: fetumn arg min,, oy, ([|€;; —@il[)

study how path-length is affected by task density (I.Q.I;]gISI Fig. 2. Greedy foraging algorithms, n, x; are the sensor radius, number

the language of [1]), and rank tasks based on their spatialrandom local points considered at each iteration, anchget's current

location vs. the Iong-term navigational goa|_ location, respectivelyg; is a unit vector that points at the goal from.

. . . .L; is a set of random points found at iterationwhere |L;| = n. The
Other previous work on agent based foraging has pr|mar|l§{,broutin§{andom(r,nwi’ &) drawsn points(; ; for 1 < j < n, such
focused on communal and/or emergent foraging behavior ihat||¢; ; — x;|| < r and||(¢;,; — ;) - & > 0. The best member dt;,
artificial colonies. Ant-like foraging is a canonical prebi in s defined by the greedy algorithmiais; ;. GreedyHeading() returns
. . . the member ofL; with the smallest angley; ; away from theg;-axis.
the multl-agent robotic domain [3] Common areas of fOCU%‘meedyProxirnity() returns the member di; that is closest tac;.
include: statistics of the time required to find food and/or
knowledge propagation within the colony as functions of
ant speed, memory, life span, communication modality (e.germined sequence has also been studied (e.qg., [18]);lysual
pheromone trail and/or contact based knowledge exchanggjith a focus on calculating and/or learning a locally optima
and colony size. Early papers date back to the 1980s [4)lanner or control policy for moving to the next waypoint.
[5], and there has been a steady stream of work to datehe origin of the sequence is largely irrelevant to the local
e.g., [6], [7], and [8]. Indeed, the field is so broad that iplan or policy. In contrast, we investigate how conflicting
is impossible to do it justice here. The main differences béecal and global objectives influence the resulting emergen
tween ant colony foraging and our work can be summarizgghth.
as follows: Ant colony foraging is primarily concerned with
the emergent behavior of a multi-agent system, the effdcts o
communication, and a scenario where agents have the longAn agent desires to move to a global goal in/a
term goal of discovering resources and relocating them todimensional Euclidean spad¥. However, it also desires to
nest i.e., a specific location to which the agents must alstorage en route by visiting “locally interesting” pointsath
return. In contrast, our work focuses on a single nomadit discovers along the way (i.e., “forage points”). The agen
agent (i.e., not assumed to return to the starting posjttbaj  is equipped with a 180-degree sensor with rang¢hat it
must balance opportunistic local foraging with global pathpoints at the long-term goal when searching for foragable
efficiency; we investigate how different algorithms, resgu points. Movement happens in a sequence of iterations. In
density, and dimensionality affect long-term path length. each iteration the agent scans ferinteresting points and
Navigation, itself, is also an entire sub-field of artificialthen moves to the “best” one—as defined by one of the
intelligence and another canonical robotics problem. Howollowing two algorithms:
ever, from early works on bug algorithms [9], [10] and grid- 1) The agent moves to the point that requires the least
based planning [11], [12] to more modern random graph  amount of angular deviation from the long-term head-

Ill. L OCAL MOVEMENT

techniques [13], [14], [15], nearly all previous navigaidh ing.
work in robotics and artificial intelligence has focused on 2) The agent moves to the point that is closest to its
navigation thatavoids obstacles or other robots—usually current location (and also in front of the robot).

by path planning or motion-planning, with an emphasis 0Rcenarios (1) and (2) are depicted in Figure 1-Left

planning In contrast, our work is on navigation thseeks ang -Right, respectively, and formalized in algorithms

local points of interest, and does not produce a detaileg-lonG reedyHeading() and GreedyProximity() in Fig-

term plana priori. . ure 2-Top and -Bottom, respectively. By construction, the
Therefore, while it may be easy to misinterpret our worknovement component along the desired heading is never

as belonging to the path planning sub-field of navigatiomegative.

this is a critical error. Although the movement we investiga e assume that the points are independent and iden-

arguably constitutes a path, that path is pEnnedin the tically distributed (i.i.d.) uniformly at random at each it

formal sense; rather, it emerges due to conflicting missiogyatior. We assume that the agent moves directly to the

with reactive planning ideas [16], [17]. The two main dif-

ferences between our work and other reactive planning ideasThis can happen in a number of interesting situations; elgenever the

. i ; ime required to study/collect/process an interesting tpsirmuch greater
are. (l) We StUdy a scenario in which local movement th%hlfnan both the time required to move to it and the time in which thietp

seeksrandom opportunities is chosen, partially, based Ohit location; or when the act of moving to a point causes therpoints

the location of a static global objective, and (2) we aréo redistribute randomly (for instance by “scaring them afjay

able to compute analytical expressions for the expected tot _4Although rotating in place is impossible for many vehiclesg(e.
. airplanes), our results still provide a reasonable appmaion when the

distance the agent eventua”y travels. distance required to perform a rotation is small relative e tlistance
Local navigation to successive waypoints along a predeetween forage points.



Sij L Further, we use boldfaced uppercase to denote sets and

8ij Y - boldfaced lowercase to denote vectors.
e P Without loss of generality, assume thatis at the origin

l\’mé{;;gi B - of a local coordinate system such that tfjeaxis contains

Ti . e the goal (see Figure 3-Left). By construction, we consider
Fig. 3. 4. (greenflight gray) is the ‘best’ point discovered fram, ~ ONly movement in the positive;-direction. Letg; be a unit
another point i; ; (red/dark gray). The unit vectd; points at the goal vector located at; that points along the;-axis. Letg; ; be
along theg;-axis. Angles away frong; and vectors fromX; to ¢; ., and the projection Ofvm- onto theg,-axis (Figure 3-Center).

£; ; are also depicted, as is the-ball B; (dashed blue circle)p; is the . . :
hypersector (green/light gray) defined By measured from the axis, the B, is defined as theD-ball of radiusr centered at;.

goal is located along thg; axis, andz; is located atr = 0. By /5 is the  Let B? refer to the half of theD-ball that exists in the
portion of the D-Ball located in the positive;-direction. non-negative g;-direction. L; C BS. Let #; measure the
3
angular distance frong;, where —n/2 < ¢; < x/2. The

technique can be modified to handle many non-EucIidea"’hnglle betweerg; andv;; is ¢;;, and the angle between

spaces, non-uniform distributions, and dynamics, butdeaP’ a.ndvi,* IS ¢i:*'
Given a particular movement from; to ¢; ;, the com-
these for future work. ’

Let X; denote the location of the robot at iteration ponent of that movement toward the goal gs;. Let

The agent's movement can be modeled as a first-ord8f7 © Sid = Vi wheres, ; is the component ok ; that
continuous-space Markov process because the stochaé%é;\? rpendicular t; ;- .

i e shall useP,(-) andE,(-) to denote the probability
process of movement from one foraged point to the ne

Xt : X
depends only on the agent's location at the former point—aIenSIty and the expectation of a quantity whén| = »,

and not the history by which it arrived there. Formally, if]rPfe a&ectye;y”)ca (Ivfgx(i)muirtl'l'dr'ogggﬁirtm j:?s?glggai?;?mp
the agent starts ak; = x; and then visits a sequence of iy — Till) P yp y Y *J

. 4 D : . (heading probability density) are statistically indepent] as
Lﬁg‘;ﬂonsxl € R forall1 <i < k+1 by makingk moves, a result,P, (||¢;; — z;||) andP, (¢; ) are also statistically

independent. We now prove two lemmas based on this fact,
P(X; = 24| Xi1 = i1, X1 = 21) regarding the effects of a single foraging act on the global

VZZI&J associated with the long-term “global” navigational goal.

L

_ path length.

=P =2ilXin = 2i) Lemma 1: E, (|lgi. ) = En([Vi..|)Ex (cos (1..))
To avoid confusion with the navigational notion of time, we  Proof: Pn (6i; —@il) and Py (¢.) are
use the term “iteration” instead of “time” to describe thestatistically independent; thus, so am, (|[(; . — z|)
basic index of movement. and P, (cos(¢ix)).  Note  |[[vi.ll = [ — .

We use the subscripts™and ‘o' to denote “best” with The expectation operator supports multiplicativity
respect todGreedyHeading() and GreedyProximity/(), between statistically independent variables; therefore,

respectively. We usex' as a proxy for &’ and ‘o’ in discus-  En ([|Vi«[ cos(¢i+)) = En (|Vi«[) En (cos (¢i+)),  and
sion/derivations that apply to botBreedyHeading() and  [[Vi«[ cos(¢i) = [|gi <[, since—7/2 < ¢, <m/2. =
GreedyProximity|(). Lemma 1 shows thak,, (cos (¢; .)) relates theexpecta-

The rest of this section is devoted to understanding tHéonsof incremental movement toward the long-term goal vs.
effect that a single foraging act has on path length. Ifhe actual movement required for local foraging at iteratio
particular, we derive compact analytical expressions fier t ¢- This result is very intuitive—given thatos (¢;,.) is the
robot’s expected movement, as a functionof r, n, and ratio between movement toward the goal vs. movement to
the particular algorithm being used. A key insight is that thPoint /; .—however, the functional non-invariance of the
expected change in path length due to foraging at iteratigiPectation operator requires that we prove it expliciflye
i is related to the expectation of trigonometric functions ofollowing corollary provides a similar result fdt,, (|s; «||)-
¢;.., Wwhereg, . is the angle between the optimal navigational Corollary 1: Ep([[s.[|) = En([lgi «[[)En (tan ([¢i,.]))
heading and the optimal forage heading. ~ Proof: P, (tan (|¢;«|)) andPy, (||s;«||) are statistically

Let L; be the set of foragable points that are available dfdependent. The rest of the proof is similar to Lemma 1,
iteration i (when the robot is af{; = x;), and let/;, be ©xcept thattan ([¢;.|), si., andg,; . are used in place of
the “best” member oL,;. We shall consider the expectation©©®S (dix), 8ix andv; ., respectively. u
of movement fromz; to ¢; ., assuming the long-term goal _ 1able 1 shows —values  of E, (cos(¢i.)) and
is further thanr from z; (in the more interesting scenarios2n (tan (|¢i0])) for select D and n. Full derivations,
in Sections IV and V we will drop this assumption). Letincluding Ey, (cos (¢i.)) and E, (tan (|¢;0[)), are treated

the vectorv, ; = {; ; — z;, and let| - || denote magnitude. IN the Appendix. However, we note that:

HV@éH = Hfzi,jt— i ?T forall ¢; ; %1 e letior L E,, (cos (¢i,e)) = E1 (cos (¢i0)) @
omenclature note: we use variations of the letter ‘L’

to represent forage points to emphasize their “local” effec En (tan (|s0])) = E1 (tan ([i0])) @

Similarly, we use variations of the letter ‘G’ for quantsie see the Appendix for more details.



TABLE | A simulated robot moving to a planer goal (20 trials)

SPECIAL CASES OFE, (COS (¢i,0)) AND Ep, (tan (|¢i,0 ‘)) ForageHeadingA(), GreedyHeading(), d=2, n=3 ForageHeadingB(), GreedyHeading(), d=2, n=3

3]
2
2
En (cos (¢1.0)) 1 |
£
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n _
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1 2 3 4 n -t 0 2 4 6 8 10
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= 3 n Tt (=D Fig. 5. A simulated robot navigates to a planer goal while &saging.
31 3 1 T % m Esl((:llrwwsub-figure contains five paths fram = [0, 0] to the goal atg; =

. . . =1 iven rticular combination of gr Igorithm |
I'(-) and((-) are the gamma and Riemann zeta functions, respectively bgcﬁgvior dir(r){eg;sd)aa?\z ;Cia;Ljo art:(lj zézso(r) r;gdﬁresdz i\go thm, goa
1 il - 2| - .

ForageHeadingA (r,n, z1, d_f;f;;?e) oal
Lxi=o1 ’
2: while z; & {4001} dO

3: Tiy1 = Greedy(ﬁ n,xq, gl)

4 if dgi;z’;e — H(xi-H — Il) . g1|| > (0 then
5: Ti = Titl
6: else ; Tane
7 zi = x € TiZit1 N {Tgoal } g0l

ForageHeadingB(r,n, z1, df;lo(;?e) Fig. 6. Path fromz; to a planar goal at = L, and related quantities
1Lxz,=x
2: while dgi’i?e — [(x; — x1) - &1]| > r do
3 wiy1 = Greedy(r,n,zi, 81) for the final iteration of algorithmForageHeadingA (),
4: T ”ialpme N while they are not the same for the final iteration of algarith
5 2y = zi 4 (dyor — Il(zi — x1)g1||) 81 ForageHeadingB(). That said ForageHeadingA () and

Fig. 4. Notation is similar to Figure 3¢; is the agent's initial position. ForageHeadingB() are identical on all but the last move;
The goal plane is aj; = dP'2"°. At iterationi the agent's location is;,  thus. their differences vanish agdpla”e — 0.
andx is the best point agg(alefined by the greedy algorithfa,; 1 is the ’ goal 1
i+1 e 4+-1 H _ plane
line segment between; and x; 1, while {z,04:} is a set containing al ~ When the goal is a hyperplane gt = d,,;", all local
points in the goal plane. [ForageHeadingA () the robot moves toward g;-axis are parallel due to symmetry. It is possible to define
a locally interesting point on the last iteration, but stepshe goal while all local coordinate systems such that the transformation
en route. InForageHeadingB() the agent does not forage on the Iastbetvyegn them is a translation in the-direction. As a result,
iteration, but moves directly to the goal hyperplane. statistics regarding thiacremental movemeiietween states
i andi + 1 are identical at alk such thatl <i < k. For
convenience, we define the global coordinate system to be
IV. DIRECTIONAL NAVIGATION WITH FORAGING the local coordinate system &, = z;. Let P, be the
path taken by the agent. Formallyz,,--- 2,41} = P.
In this section we consider the case where an agent’s Ion%|Ch thatXy; =y, -+, X3 1 = 24 41. Recall thatv; , is

term goal is to reach a hyperplane located at a distan@ Vector defined by theth movement alongP,. Given
4P from the agent. For example, a geopolitical boundaryi + coordinate systeny; . = zy1 — z; (see Figure 6). Let
gent. ple, a geop X X, denote the state transition at iteratibriThen for alli

oal
(guch as country’s border) or geographic boundary (sugich thatl < i < k (notei # k)
as shoreline). Without loss of generality, we assume t _ _
agent’s initial global position; is at the origin and the goal %(AX"' = Vi Xic1 = 2i1) SP(AX = Vi) SP(AXS = Vi),
hyperplane is ay; = d’g’é‘fl’l‘e. Thus, understanding the behavioriat= 1 is equivalent
The final movement to the goal can be addressed in two understanding the behavior at all other iterations eixcep
different ways, depending on if the agent favors the shart- @ = k. This simplifies the analysis. Further, we have already
long-term objective on the final move (see Figure 4). In algoevaluated the relevant movement for wheégt & in the
rithm ForageHeadingA () the agent never forages the lastprevious section, i.e., wheR(AX; = vy ,) = P(X; =
point that it detects, but moves toward it until reaching the|X; = z1).
goal. In algorithmForageHeadingB() the agent moves di-  ||P.|| = Zle |vi.«|| is the cumulative length dP... The
rectly to the goal whenever it is closer thaiSee Figure 5). rest of this section is devoted to calculating and/or bongdi
Both of these algorithms maintain the Markov propertythe expected path lengfB, (||P.||) as simple functions of

However, E,, (¢;..) and E,, (cos (¢;,)) remain unchanged E, (cos (¢;.)). Casual readers wishing to skip the details of



. Simulated robot results vs. theoretical results (planet)goa
the proofs should at least note the statements of Coral@rie ForageHeadingA(), GreedyHeading0), d=2, n=2 ForageHeadingB(), Gtee(dBHeadtngtz g:s, =2

and 3, as well as the favorable agreement between thi W stogam W isiogam
theoretical and experimental results (Figure 7). 2000 00
Recall thatg; . is the projection ofv,, onto the g;-

axis. |v; .|| and||g; .|| are the magnitudes of; . andg; .,
respectively, andp; . is the angle betweew; . andg; .,
and cos(¢; ) = ||gi« «||. Although the value ofk
is random for any particular run dforageHeadingA ()
or ForageHeadingB(), our analysis only requires that
iterationk be the final movement to the god,, (||v,.||) is
the expected distance that the agent moves during the fing .o
iteration andE,, (||gk.«||) is the length of the projection of

the final movement onto the -axis.

. AP —Ep ([lgk, «1l)
Theorem 1: E,, (|P,]|) = WJrEn(HVk,*H)

for navigation to a planar goal with foraging.
Proof: By construction and the linearity of expectation
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E, (||P.]) = ZleE (1viel)- Substituting from Lemma 1
gives: E, (|[P.]]) = En (Vi) Jrzt .- (C(\)I;s(;)*\l))) We Fig. 7. Observed statistics over 100000 experimental trigith a

_ simulated robot over four different combinations of algarittgoal behavior,
know that P(AXZ - Vz,*) = P(XZ - $2‘X1 - xl) for dimensiond, and local forage points = |L;|. In all experiments sensor
1 <i <k, and sdE,, (cos (¢;, *)) =E, (cos (¢1,x)). Alsoby  radiusr = 1 and d”.*7 = 10. Histograms show the distributions of
construction — dP'*"¢ and so by the linearity €xperimental path lengths and red-line depicts the mean v@hen line(s)

Zl 1 ”gz <= goal plane plZne y show the theoretically predicted expectations based omiealytical results
of eXpeCtatlon and also thﬁ]:n(dgoal ) = dgoal , We have (exact value or upper and lower bounds, depending on agoyit

l k— 1
Agoar” = Bn (I8k+) = 22i2) En(llgi ). Substitution
finishes the proof. [ Simulated robot, point goal, X10
i plane . ForageGoalPoint(), GreedyHeadmg() d=2, n=5
Corollary 2: E, (||P.|]) = W&“)) for algorithm "”'h e ﬁ
ForageHeadingA (). . B—
. . ) ForageGoalPoint(r,n,21,Zg0a1)
Proof: Lemma 1 is also valid wheh= k because stop- ForageGoalPoint(), GreedyProximity(), d=2, n=5

ping the agent at the global goal (i.e., somewhere betweek Zi = 1

2: while ||zgoar — zi|| > 7 do ! 4
x) and (. .) does not chang&,, (¢x.) or Ey, (cos (¢r+)) 5 mlxi Gfree:ctin(r TG - oﬁé@\e%%ﬁé@
1

plane 4: Ti = Ti4+1 0 2 4 6 8 10

Corollary 3: g—et—s + r < E,([P.]) < 5 i =2gm

grlane Fig. 9. Paths taken

Floetsy (Cf);(“él 0 for algorithm ForageHeadingB(). Fig. 8. Notation similar to Figures 30y ta fSImuIated[0 0]rotbot
" s ; and 4.z, is the long-term goal. ~ havigating from z; = [0,0] to

Proof: By construction 0 <E, (||gx,«||) <r and goal 9 9 Zre1 = [10,0]. Five paths each
0<E, (vl <. | for GreedyHeading() (Top)
Figure 7 shows statistics from experiments witlsiau- and  GreedyProximity().

lated robot superimposed on the expected values predicted D=2mn=[L|=5r=1

by our analytical results. 10000 experiments are performed

per each algorithm combination. Various valuesdcdnd n

are used, whilel”’""¢ — 10 andr = 1. The expected values &i+ IS now defined as the projection of; .. onto the g;-
and bounds are within.005% and 0.02% of the average axis (and not they, axis, in general). Unlike the previous
experimental path length, respectively. Note that we shoufection,g;-axis andg;-axis are not parallel foi 7 j (with
expect the bounds to approach an equaht;igi%" Jr — oo probability 1). Although the Markov property is maintained

and/orn — co. the computation of an exad,, (||P.||) becomes difficult,
due to the loss of translational symmetry, and we must settle
V. POINT TO POINT NAVIGATION WITH FORAGING for computing bounds instead. We begin with a relatively

We now consider the case where the long-term goal istight lower bound, before moving on to calculate a loose
point. The agent uses tHBorageGoalPoint() algorithm upper bound.
in Figure 8. Examples of paths taken by a simulated robot The basic idea is to show that the point-goal problem can
using ForageGoalPoint() are shown in Figure 9. be transformed into the plane-goal problem of the previous
Without loss of generality, we define the local coordinatsection, but that the transformation increases the effecti
system at eachX; = z; such thatz; is at the origin and dg”gfj}e of the resulting plane-goal problem vs. thg,,;
the goal point on they;-axis. Let dg.,; be the distance of the original point-goal problem (see Figure 10). The
betweenX; and the goal. As in the previous section, weransformation involves a rotation at eadh of the rest of
use the local coordinate system & = x; as our global the problem. Thus, usind..: instead ofd”'*"¢ leads to a

oal

coordinate system. However, it is important to note thabwer bound onE, (||P.]|). Casual readers should note the
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Fig. 11. The red (center) and blue (right-most) triangle amalar. ; is
the angle used to rotatgr;, - - - , zx4+1} aroundz; such that they;-axis
is parallel tog; _-axis, andA;x1 is the resulting shift inz,, along
the g;—1 axis. Ajzp1 < m; by construction, andn; < ||s;—1,«|| when
[i| < /4 (which is always).

Fig. 10. Top: Path fronx; to a point goal atr,,;, and related quantities.

Middle: rotation of the sub-patfx;,- - , 2404} does not increase path Simulated robot results vs. theoretical results (point )goal
Iength. Bottom: performing rotation fOI’ a“ nodes SUCh tgatk iS paraIIeI ForageGoalPoint(), GreedyHeading(), d=3, n=4 ForageGoalPoint(), GreedyProximity(), d=3, n=4
to thegl axis for all 2. ’ Il Histogram Il Histogram

— Average — Average

2000 2000

Lower Bound
Upper Bound

Lower Bound Expected
Upper Bound Expected

1500 1500

statements of Theorems 2 and 3, as well as the comparisos
of theoretical to experimental results in Figure 12.

Lemma 2: Given a pathP,. = {x1,- - ,x;4+1}, Rotating
the sub-path{z;, - ,zr+1} around z; will not change . —

20 25 30
k k path length path length
P.l| = — VT L
H ” E’ ! warl xl” ;ﬁ:l Hvl’* k Fig. 12. Observed statistics over 100000 experimentalstrigith a
Proof: Z =1 HVz <l = Z 1 Vil + Z] i IvVi«ll- 1t simulated robot. Dimension = 3, forage pointsn = 4, sensor radius

is obvious thatz ||v . H remains unchanged because” = 1 anddy,,; = 10. Histograms show the distributions of experimental
f < < Js f d b h path lengths and red-line depicts the mean value. Greendimas the theo-
z; for 1 < j < i are not affected by the rotation retically predicted bounds on expectation based on ouytcalresults. The

of {%'7 ... ,$k+1} around z;. Also, Zf:z ||Vj,* || remains upper bound is located &8.2 in the left sub-figureGreedyHeading(),

unchanged because no scaling occurs W{'lf%m' . a$k+1} and is nonexistent in the right sub-figu@reedyProximity ().

is rotated around:;, and so||v; .|| for all i < j < k is the

sa_rlphe beforezarll((i) after ihte rotatltoln (Sfe Figure 1(?-m|ol!;) the algorithms we are considering;| < w/4 always. ®
eorem r point-to-point lo :I:]g erm navigation wi Theorem 3: E, (|P. ) < roal

greedy foragingE, (||P.|) >+ En(cgg(l¢l 57 iven thatk, (tan (|6, *\))__ B, (cos(1, ) (1 —En (Gan([d1,21)) *

q Prom;. Tht;S is adc%nsequenc_e of the triangle ir;equzllit Proof: Using Lemma 3 with the definition of
and can be observed by examining a sequence of pro elglysﬁe gives dpi)tzr;e <dgoaz+2f:2 i1 || tan(éi_1).
_that have equal_path length. Starting at 2, anq then work-_ gking the gxpectatlon and  rearranging gives:
ing forward fori = {2,--- , k}, each successive problem is plane k
obtained b . _ . ) E (d oal )<]E ( goal)""zi:lEn(Hgifl’*H)En (ta‘n(|¢’b,*|))

y rotating the sub-pafhy;, - - - , x441} aroundz;, Wi 9 o

: . Lo e observe that E, (tan(|¢l*|))—E (tan (|¢1,«]))
such thatg; . is parallel to theg;-axis, and points in the and E, (d g d < gplane
positive direction (see Figure 10-bottom). Because ronmati (dgoar) = dgoar &N Ez 2 i1l < oot
are performed around;, path length remains unchanged bySubstituting, we get the slightly loosek,,(dg,, ") <
Lemma 2. Further, we have warped the path such that tlgoar + En(d%ne;)Ey (tan (|¢1..]). Rearranging gives:
apparent location of the goal from every “was” along E, (dgi)‘jl’l‘e) < W, but comes at the price that
the same heading during the calculation{pf. However, we requireE, (tan (|¢;.|)) < 1. Substituting this result
each rotation moves the apparent location of a planar goako the upper bound in corollary 3 finishes the pfoof m
in a non-decreasing manner with respect to theaxis A critical insight from Theorem 3 is that convergence
(e.g., mcreasesi”é‘;’f) so dpf;f;zw =3 llgisll > dgour  is not guaranteed by our bound whip (tan (¢ «])) > 1.
by construction. Substitutmg this into the lower bound oUnfortunately, this means that the upper boundqr{||P., ||)
corollary 3 gives a slightly looser lower bound. We use corolis infinite for GreedyProximity(). On the other hand,
lary 3 becaus&orageHeadingB() handles movement at when usingGreedyHeading() E,, (tan (|¢;..|)) > 1 only
iteration & similarly to ForageGoalPoint(). B happens when there are relatively fews. D; and because

We now calculate an upper bound @5 (||P.||) by find- E, (tan(|¢;0|)) — 0 and E,, (cos (¢;0)) — 1 asn — oo,
ing an upper bound on]p“;”e Let Az be the translation the upper bound off,, (|P,||) shrinks asn increases.
of ;. along theg;-axis due to the rotation ofz;,--- ,zx} Figure 7 contains statistics on a large number of exper-
around z;, and lety; be the angle of that rotation (seeiments involving asimulated robot that are performed to

lane
Figure 11).5°F | |lg;.. | = dP'ene = L+ A
N goal goa =2 Srecall the statistical independence of proximity and angle

: < _ _
Lemma 3: _A’xk'H < g 1’*“ tan(di—1) 5This is asllght abuse of notation, but recall that we made thstitution
Proof: It is easy to see (Figure 11) tha; )1 <m;  grlane _ n(d” !2n¢) in the derivation of Theorem 1, in the first place.

goal

when|y;| < /2. Using S|m'|ar t“angles we also know that g4 the factordpl“"e in Theorem 1 can be replaced Eyz(d’;i‘fﬁe) before
m; < ||si—1,«] = 18i—1,+ ) iff |¢;] < /4, and for  the final subsfitition is made in the current proof.

1000 1000
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histogram bin population
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verify the accuracy/tightness of the results that we have In general, E, (cos(¢;.)) # cos(E, (¢i0)) and

obtained. 100000 experiments are performed per each &l (tan (|¢;o|)) # tan (E, (|¢:0|)). However, the expec-

gorithm combination andl = 3, n =4, dgig’;@ =10, and tationsE, (cos (¢;.)), E, (tan (|¢io|)), andE, (¢;.) can

r = 1. The lower bound is less accurate than in the cadee calculated from the probability density functions of

of a planer goal, but still withint% of the average ex- cos(¢;.), tan(|¢;o|), and ¢, .—which themselves can be

perimental value observed witlhireedyHeading() and calculated using order statistics given the probabilitysisy

12% for GreedyProximity()—it is expected to approach and distribution functions ofos(¢; ), tan(|¢;|), and¢; over

0% asn — oo. On the other hand, the upper boundB®. For ease of notation, we shall drop the subscript *

is very loose forGreedyHeading() and nonexistent for for the intermediate steps of these derivations in which

GreedyProximity(). The latter happens because movewe consider the quantities relevant to a single iteration of

ment with a positive goal-wise component does not nece&reedyHeading|().

sarily bring the agent closer to that goal; and provides an The distribution functionF, of ¢ can be found using the

argument to avoid usinGrreedyProximity () in the point- problem’s geometry. Given our assumptions, the probgbilit

goal scenario. a point is sampled from any particular region of space is

proportional to the Lebesgue measure of that region. Let

VI. CONCLUSIONS ® denote the hypersector dB that is bounded by the

We propose and study theavigation with foragingprob-  'évolution of ¢ around theg-axis, see Figure 3-Right (e.g.,
lem, where an agent must simultaneously (1) navigate th P =2 then @ is a sector and ifD = 3 then ¢ is a
a global goal and (2) forage en route as opportunities t%ohencal cone, etc.). Letige and\g represent the Lebesgue

. o S i Y
forage are detected. This problem has applications to combg'€asure ofB= and &, respe(;tlvﬂ?li/. ThusfFy = 3.
scientific exploration, search and rescue, intelligendfi-ga From [20], we know\ge = #211), whereI'() is the

ering, and other areas. The problem is interesting becaugamma function andz = 2\ge. From [21] we know\e =
achieving a long-term objective must happen in parallelge I,z 4 (252, 1), wherel,2 , (252, 3) is the regular-

2 02 2 12
to achieving many small objectives. The latter each causeed incomplete beta functioh. (251, 1) evaluated at =
Fati sin2 .D-1 1
a small deviation from the former, and the two types Oginz 6. Thus, L2 4 (Dz_la%) _ B(sin®(#); 25+ ,2)' where

objectives occur at very different time scales. B(P.3)
We study two local foraging algorithms: (A) forage theB (Z5=,3) andB (sin®(¢); 25, 1) are the corresponding
point that minimizes deviation from the heading of the longbeta function and incomplete beta function, respectively
term goal, and (B) forage the closest point ahead of the agef#2]. Substituting the integral form of the beta functions

sin? - -
We consider both planar and point long-term goals. yields: Iz 4 (252, 1) = Lo fl(i);iz)/z)(/f(i)‘ff/;d/;dt_ Note
Both analytical and experimental results show that thg,,; ¢ ranges fromo to 7r/2(i)n this calculation, with the

average Iength_of the path decreases_as global naVigati%‘nsequences thasin(¢)| = sin(¢) and| cos(¢)| = cos(¢)
becomes more important vs. local foraging, i.e., (A) vs. (B)ynq tan(|¢|) = |tan(p)| = tan(¢). Also note, cos(¢) is
This decrease is significantly more pronounced for SCEﬂari%onotonically decreasing vs: on the rangep = [0, /2]
with point goals than for scenarios with boundary goals, angije tan(¢) is monotonically increasing on the range
is a consequence of the fact that boundary goals exist $t: [0,7/2). This means that whileo' is being used to

many locations while point goals exist at a single location.yanote the minimum value with respect dcand tan(¢), it
Our analytical bounds are tight vs. experimental_ results iR denote the maximum value with respectdes(¢). The

the case of a planar goal, and for the lower bound in the Caﬁ%creasing;os(¢) vs. ¢ also implies that its corresponding

of a point goal. On the other hand, our upper bound for thgjstrihution function iSF,05(4) = 1—Fy, While the increasing

point goal scenario is loose for (A) and nonexistent for (B)tan(gb) vS. ¢ means that,,,, s = Fj.

The latter is a consequence of the fact that movement with aprobability density functions op andcos(¢) and tan(s)

positive component toward a point goal does not necessarily,, fo = F(é and foos(s) = Féos(qﬁ) and fran(s) = Ft/an(gi))‘

reduce thg dis_tance_ to that _goal. ) . respectively, wheref, and FC’OS( ) and Ft’an( 5 are the
The navigation with foraging problem we study is unique&yerivatives of

v s i Fy and Fioq4) and Fia,p) With respect to
from previous navigation and foraging problems. However
it may be possible to extend our work in either of the latter
directions. For example, calculating the expected lendth
a planned-path in a random environment would undoubted
be useful. Adding foraging as a secondary objective in th&
context of re-planning algorithms (or vice versa) also see
like a natural extension to this work.

It is now possible to use order statistics to find
e probability density function of¢p, and cos(¢,).
ince ¢, represents the minimump over a set of

ze n, we are interested in the first order statistic of
My. This is foo =n(1—Fy)" 1 fy. Likewise, feos(s).
is given by the n-th order statistic of cos(¢) as
APPENDIX follows: fcos((bo) = fcos(qﬁ)o = n(Fcos(qﬁ))nilfcos(d))’

where  foos(po) = feos(e), COmMes from the fact that
This appendix contains the derivation Bf, (cos (¢;.)), cos(¢) is non-increasing on¢ = [0,7/2]. Similarly,
E, (tan (|¢io|))s Ey (cos (¢;0)), andE,, (tan (|¢;.o|))- Jtan(e), is the first order statistic ofan(¢) as follows:



ftan(qbo) = ftan(¢)o = 7’L(1 - Ftan(qb))nilftan(@- Expected
values forg,, cos (¢.), andtan (¢.) can now be computed:
¢ ”/2¢n1—F)n Ufsd
i, O }) ¢ o) ¢ [2]
E, (COS ¢z o)) = COS ( cos( ¢)) 1fcos ¢)d¢
E, (tan |¢L o| fO tan (1 - Ftan(¢)) ftan(d))dd)
(3]
Given D and n it is possible to solve for an{, (¢; ), ]
E, (cos(¢i.0)), and E, (tan(|¢;.|)). A few cases are
presented in Table I.
(5]

We now considerE,, (cos (¢i0)), and E, (tan (|¢iol)).
which are relevant tdGreedyProximity(). Note we re-
sume our use of the subscript ‘Although it is possible to
derive E,, (cos (¢i,0)) andE, (¢;) in a similar fashion to
E, (cos(¢:.0)) andE, (¢;.), respectively, there is a much
easier way based on on the scale symmetry of spherical shelld
and the statistical independence of angle and proximity.

Moving any point/; ; € B® directly toward or away from
Z; Changeﬂ\va = ||£i,j — .’E1|| but notqu-, COS(QSL]'), or
tan(¢; ;). (we can ignore the measure 0 set whére= z;
and ¢, ; is undefined, as well as the measure O set where
¢;,; = /2 andtan(¢; ;) is undefined). [

Let By denote the level-set oBY that is the half-
sphencal sheII located at radluswhereO <7 <r.Thatis,
By, = U for all z such thatr = ||z — :z:1||. Let B, be
the particular level-set such that, € BY. . Given our i.i.d
uniform sampling assumptions, with probab|I|Iythere is
only one member ak; OB6 , and this member i§, . Thus,
the problems of calculatln@*:n (¢io) and E, (cos (¢io))
andE,, (tan (|¢;|)) for L; ¢ BY are reduced to calculat-
ing E,, (¢i,0) and E, (cos (¢i0)) and E,, (tan (|¢;])) for
a single point/;, drawn randomly fromBY such that
Ui € By wherer, = |[{; o — z;]|. The scale symmetry of 14,

(6]

(8]

[20]

(11]

[12]

(13]

Be for 0 < 7 < r with respect t@,, (¢ij = dilli; € BS:),

gives: [15]
Pn(¢i,o) = Pn((bi,owi,o € B?fo) = Pn(¢i,o|£i,o S B?r) [16]

In other words, replacing, with any other value® € (0,7]  [17]

will yield identical results vsE,, (¢;.) andE,, (cos (¢i.0))

and E,, (tan (|¢; o)) because it will not change; . or (18]

cos (¢i,6) Of tan (|¢; .|). For convenience, we uge= r

Again using scale symmetry and statistical independenc%g
we realize that any poirt, ; € BY can be projected directly [l
away fromz; to the surface oBY without affectinge, ;  [20]
or cos (¢; ;) or tan (|¢; o|). Therefore, calculating,, (¢; o) 21]
andE,, (cos (¢;.)) for a single point/; , drawn randomly
from By such that/;, € Bf, is the dual of calculating
E, (¢io) andE,, (cos (¢;.)) for a single point¢; , drawn
randomly fromB§. Finally, when only one point is drawn
from BY then, by constructionGreedyHeading() and
GreedyProximity() must return the same result. Thus

n (¢ie) = E1 (¢i,0), andE,, (cos (¢4,0)) = Eq (cos (¢i,0)),
andE, (tan (|1,0) = Ei (tan ([éy.0]))-

[22]
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