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Abstract— We propose and study thenavigation with foraging
problem, where an agent with a limited sensor range must
simultaneously: (1) navigate to a global goal and (2) forage en
route as opportunities to forage are detected. Each foraging
act causes a deviation from the shortest path to the long-term
goal, with consequences for path length, mission duration, and
fuel usage. We analytically calculate and/or bound the expected
distance the robot actually travels, given the initial distance to
the the global goal. In particular, for either of two non-trivial
greedy strategies: (A) forage the point that minimizes goal-
heading deviation. (B) forage the closest point ahead of the
robot. Our results generalize to problems in higher dimensions.

I. I NTRODUCTION

We definenavigation with foragingas the hybrid problem
in which an agent with a limited sensor range must simul-
taneously: (1) navigate to a global goal and (2) forage en
route as opportunities to forage become available. Each actof
foraging increases the total distance that the robot must travel
(with obvious consequences to path length, mission duration,
and fuel usage). The problem is non-trivial, assuming that
the agent simultaneously works to achieve both objectives.
The cumulative acts of fulfilling many short-term foraging
objectives must result in the fulfillment of one long-term
navigational objective, and the two objective types occur at
significantly different time scales.

To further motivate the problem, we now describe several
scenarios in which navigation with foraging occurs:

• Scientific Exploration: a landing rover’s mission in-
volves visiting a distant crater while sampling interest-
ing chemical/geological features that are detected along
the way.

• Combat: an unmanned aircraft must visit a valuable
target and then return to friendly territory, while also
eliminating hostile targets that are detected along the
way.

• Search and Rescue: a rescue vessel (boat or helicopter)
must reach land before running out of fuel, but also
desires to rescue people along the way.

• Intelligence Gathering: a spy plane’s primary mission
is to photograph a known enemy installation and then
return to safety; however, it is also expected to photo-
graph other unexpected enemy activity that it detects.

• Salvage Operations: A sinking ship has jettisoned cargo
into the sea. The ship is the primary objective, but
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Fig. 1. Greedy navigation with foraging algorithms. Left: the agent forages
the point with the heading nearest to that of the long-term global goal. Right:
the agent forages the closest point. The global goal can either be a point
(Left) or a plane (Right).

salvaging the floating cargo is also desirable.

In this paper we focus on quantifying the cumulative
effects of foraging on path length1. In particular, we in-
vestigate two special cases of navigation with foraging:
(1) always forage the point that minimizes goal-heading
deviation, (2) always forage the closest point that has a
positive movement component vs. the goal. See Figure 1-
Left and Right, respectively. These are the twonon-trivial2

pure-strategy extremes—i.e., they are respectively focused on
reaching the long-term goal or foragingas much as possible
without foregoing the other mission constraint.

We model this scenario as a first-order continuous-space
Markov processes, and develop tools that allow us to solve
for the expectation of the total distance traveled. All formula-
tions are derived with respect to arbitrary dimensionality, and
thus immediately generalize to higher dimensional spaces.
To the best of our knowledge, we are the first to investigate
navigation with foraging algorithms.

This paper is organized as follows:Section II contains
a survey of related work. Section III contains the analysis
of a single foraging act. Section IV considers foraging
while moving toward a boundary (e.g., a geopolitical border,
shoreline, etc.). Section V considers foraging while moving
toward a point. Both IV and V contain theoretical and
experimental results related to the particular scenarios they
address. Conclusions are presented in Section VI.

II. RELATED WORK

In [1] a predator-prey patch model is used to evaluate
which tasks an agent should perform, assuming tasks are
encountered randomly within a patch (a bounded subset of
the environment), and the agent may move between patches.
Tasks are defined broadly, and are arguably analogous to
our forage points. The main theoretical contribution of [1]

1Assuming constant speed, path length can be used to calculatethe effects
of foraging on mission duration and fuel usage.

2In contrast,trivial pure strategies involve ignoring one of the two mission
requirements: (1) Move directly to the goal without foraging. (2) Always
forage the closest point (which will reach the goal with probability 0).



is an analysis showing the subset of tasks that are expected
to maximize an agent’s long-term reward. There is no long-
term navigational objective, and tasks are ranked based on
a predefined (and static) expected return on foraging effort.
[2] explores a similar multi-agent scenario. In contrast to[1]
and [2], we consider a navigation with foraging scenario,
study how path-length is affected by task density (i.e., using
the language of [1]), and rank tasks based on their spatial
location vs. the long-term navigational goal.

Other previous work on agent based foraging has primarily
focused on communal and/or emergent foraging behavior in
artificial colonies. Ant-like foraging is a canonical problem in
the multi-agent robotic domain [3]. Common areas of focus
include: statistics of the time required to find food and/or
knowledge propagation within the colony as functions of
ant speed, memory, life span, communication modality (e.g.,
pheromone trail and/or contact based knowledge exchange),
and colony size. Early papers date back to the 1980s [4],
[5], and there has been a steady stream of work to date,
e.g., [6], [7], and [8]. Indeed, the field is so broad that it
is impossible to do it justice here. The main differences be-
tween ant colony foraging and our work can be summarized
as follows: Ant colony foraging is primarily concerned with
the emergent behavior of a multi-agent system, the effects of
communication, and a scenario where agents have the long-
term goal of discovering resources and relocating them to a
nest, i.e., a specific location to which the agents must also
return. In contrast, our work focuses on a single nomadic
agent (i.e., not assumed to return to the starting position), that
must balance opportunistic local foraging with global path
efficiency; we investigate how different algorithms, resource
density, and dimensionality affect long-term path length.

Navigation, itself, is also an entire sub-field of artificial
intelligence and another canonical robotics problem. How-
ever, from early works on bug algorithms [9], [10] and grid-
based planning [11], [12] to more modern random graph
techniques [13], [14], [15], nearly all previous navigational
work in robotics and artificial intelligence has focused on
navigation thatavoids obstacles or other robots—usually
by path planning or motion-planning, with an emphasis on
planning. In contrast, our work is on navigation thatseeks
local points of interest, and does not produce a detailed long-
term plana priori.

Therefore, while it may be easy to misinterpret our work
as belonging to the path planning sub-field of navigation,
this is a critical error. Although the movement we investigate
arguably constitutes a path, that path is notplannedin the
formal sense; rather, it emerges due to conflicting mission
requirements. In this respect, our work shares similarities
with reactive planning ideas [16], [17]. The two main dif-
ferences between our work and other reactive planning ideas
are: (1) We study a scenario in which local movement that
seeksrandom opportunities is chosen, partially, based on
the location of a static global objective, and (2) we are
able to compute analytical expressions for the expected total
distance the agent eventually travels.

Local navigation to successive waypoints along a prede-

ℓi,∗ = GreedyHeading(r, n, xi, ĝi)

1: Li = Random(r, n, xi, ĝi)
2: return arg minℓi,j∈Li

(φi,j)

ℓi,∗ = GreedyProximity(r, n, xi, ĝi)

1: Li = Random(r, n, xi, ĝi)
2: return arg minℓi,j∈Li

(‖ℓi,j − xi‖)

Fig. 2. Greedy foraging algorithms.r, n, xi are the sensor radius, number
of random local points considered at each iteration, and theagent’s current
location, respectively.̂gi is a unit vector that points at the goal fromxi.
Li is a set of random points found at iterationi, where |Li| = n. The
subroutineRandom(r, n, xi, ĝi) drawsn pointsℓi,j for 1 ≤ j ≤ n, such
that‖ℓi,j − xi‖ ≤ r and‖(ℓi,j − xi) · ĝi‖ > 0. The best member ofLi,
as defined by the greedy algorithm, isxi+1. GreedyHeading() returns
the member ofLi with the smallest angleφi,j away from thegi-axis.
GreedyProximity() returns the member ofLi that is closest toxi.

termined sequence has also been studied (e.g., [18]); usually
with a focus on calculating and/or learning a locally optimal
planner or control policy for moving to the next waypoint.
The origin of the sequence is largely irrelevant to the local
plan or policy. In contrast, we investigate how conflicting
local and global objectives influence the resulting emergent
path.

III. L OCAL MOVEMENT

An agent desires to move to a global goal in aD
dimensional Euclidean spaceℜD. However, it also desires to
forage en route by visiting “locally interesting” points that
it discovers along the way (i.e., “forage points”). The agent
is equipped with a 180-degree sensor with ranger, that it
points at the long-term goal when searching for foragable
points. Movement happens in a sequence of iterations. In
each iteration the agent scans forn interesting points and
then moves to the “best” one—as defined by one of the
following two algorithms:

1) The agent moves to the point that requires the least
amount of angular deviation from the long-term head-
ing.

2) The agent moves to the point that is closest to its
current location (and also in front of the robot).

Scenarios (1) and (2) are depicted in Figure 1-Left
and -Right, respectively, and formalized in algorithms
GreedyHeading() and GreedyProximity() in Fig-
ure 2-Top and -Bottom, respectively. By construction, the
movement component along the desired heading is never
negative.

We assume that then points are independent and iden-
tically distributed (i.i.d.) uniformly at random at each it-
eration3. We assume that the agent moves directly to the
appropriate forage point at each iteration4. We believe our

3This can happen in a number of interesting situations; e.g., whenever the
time required to study/collect/process an interesting point is much greater
than both the time required to move to it and the time in which the points
shift location; or when the act of moving to a point causes the other points
to redistribute randomly (for instance by “scaring them away”).

4Although rotating in place is impossible for many vehicles (e.g.,
airplanes), our results still provide a reasonable approximation when the
distance required to perform a rotation is small relative to the distance
between forage points.
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Fig. 3. ℓi,∗ (green/light gray) is the ‘best’ point discovered fromxi,
another point isℓi,j (red/dark gray). The unit vector̂gi points at the goal
along thegi-axis. Angles away from̂gi and vectors fromXi to ℓi,∗ and
ℓi,j are also depicted, as is theD-ball Bi (dashed blue circle).Φi is the
hypersector (green/light gray) defined byφi measured from theg axis, the
goal is located along thegi axis, andxi is located atx = 0. B1/2 is the
portion of theD-Ball located in the positivegi-direction.

technique can be modified to handle many non-Euclidean
spaces, non-uniform distributions, and dynamics, but leave
these for future work.

Let Xi denote the location of the robot at iterationi.
The agent’s movement can be modeled as a first-order
continuous-space Markov process because the stochastic
process of movement from one foraged point to the next
depends only on the agent’s location at the former point—
and not the history by which it arrived there. Formally, if
the agent starts atX1 = x1 and then visits a sequence of
locationsxi ∈ ℜD for all 1 ≤ i ≤ k+1 by makingk moves,
then

P(Xi = xi|Xi−1 = xi−1, · · · , X1 = x1)

≡ P(Xi = xi|Xi−1 = xi−1)

To avoid confusion with the navigational notion of time, we
use the term “iteration” instead of “time” to describe the
basic index of movement.

We use the subscripts ‘◦’ and ‘⋄’ to denote “best” with
respect toGreedyHeading() andGreedyProximity(),
respectively. We use ‘∗’ as a proxy for ‘◦’ and ‘⋄’ in discus-
sion/derivations that apply to bothGreedyHeading() and
GreedyProximity().

The rest of this section is devoted to understanding the
effect that a single foraging act has on path length. In
particular, we derive compact analytical expressions for the
robot’s expected movement, as a function ofD, r, n, and
the particular algorithm being used. A key insight is that the
expected change in path length due to foraging at iteration
i is related to the expectation of trigonometric functions of
φi,∗, whereφi,∗ is the angle between the optimal navigational
heading and the optimal forage heading.

Let Li be the set of foragable points that are available at
iteration i (when the robot is atXi = xi), and letℓi,∗ be
the “best” member ofLi. We shall consider the expectation
of movement fromxi to ℓi,∗, assuming the long-term goal
is further thanr from xi (in the more interesting scenarios
in Sections IV and V we will drop this assumption). Let
the vectorvi,j = ℓi,j − xi, and let‖ · ‖ denote magnitude.
‖vi,j‖ = ‖ℓi,j − xi‖ < r for all ℓi,j ∈ Li.

Nomenclature note: we use variations of the letter ‘L’
to represent forage points to emphasize their “local” effects.
Similarly, we use variations of the letter ‘G’ for quantities

associated with the long-term “global” navigational goal.
Further, we use boldfaced uppercase to denote sets and
boldfaced lowercase to denote vectors.

Without loss of generality, assume thatxi is at the origin
of a local coordinate system such that thegi-axis contains
the goal (see Figure 3-Left). By construction, we consider
only movement in the positivegi-direction. Letĝi be a unit
vector located atxi that points along thegi-axis. Letgi,j be
the projection ofvi,j onto thegi-axis (Figure 3-Center).

Bi is defined as theD-ball of radiusr centered atxi.
Let B⊖

i refer to the half of theD-ball that exists in the
non-negativegi-direction. Li ⊂ B⊖

i . Let φi measure the
angular distance from̂gi, where −π/2 ≤ φi ≤ π/2. The
angle between̂gi and vi,j is φi,j , and the angle between
ĝi andvi,∗ is φi,∗.

Given a particular movement fromxi to ℓi,j , the com-
ponent of that movement toward the goal isgi,j . Let
gi,j + si,j = vi,j , wheresi,j is the component ofvi,j that
is perpendicular togi,j .

We shall usePn(·) and En(·) to denote the probability
density and the expectation of a quantity when|Li| = n,
respectively. Given our i.i.d. uniform sampling assumptions,
P (‖ℓi,j − xi‖) (proximity probability density) andP (φi,j)
(heading probability density) are statistically independent; as
a result,Pn (‖ℓi,j − xi‖) andPn (φi,∗) are also statistically
independent. We now prove two lemmas based on this fact,
regarding the effects of a single foraging act on the global
path length.

Lemma 1: En(‖gi,∗‖) = En(‖vi,∗‖)En (cos (φi,∗))
Proof: Pn (‖ℓi,j − xi‖) and Pn (φi,∗) are

statistically independent; thus, so arePn (‖ℓi,∗ − xi‖)
and Pn (cos (φi,∗)). Note ‖vi,∗‖ = ‖ℓi,∗ − xi‖.
The expectation operator supports multiplicativity
between statistically independent variables; therefore,
En (‖vi,∗‖ cos(φi,∗)) = En (‖vi,∗‖)En (cos (φi,∗)), and
‖vi,∗‖ cos(φi,∗) = ‖gi,∗‖, since−π/2 ≤ φi,∗ ≤ π/2.

Lemma 1 shows thatEn (cos (φi,∗)) relates theexpecta-
tionsof incremental movement toward the long-term goal vs.
the actual movement required for local foraging at iteration
i. This result is very intuitive—given thatcos (φi,∗) is the
ratio between movement toward the goal vs. movement to
point ℓi,∗—however, the functional non-invariance of the
expectation operator requires that we prove it explicitly.The
following corollary provides a similar result forEn(‖si,∗‖).

Corollary 1: En(‖si,∗‖) = En(‖gi,∗‖)En (tan (|φi,∗|))
Proof: Pn (tan (|φi,∗|)) andPn (‖si,∗‖) are statistically

independent. The rest of the proof is similar to Lemma 1,
except thattan (|φi,∗|), si,∗, and gi,∗ are used in place of
cos (φi,∗), gi,∗, andvi,∗, respectively.

Table I shows values of En (cos (φi,◦)) and
En (tan (|φi,◦|)) for select D and n. Full derivations,
including En (cos (φi,⋄)) and En (tan (|φi,⋄|)), are treated
in the Appendix. However, we note that:

En (cos (φi,⋄)) = E1 (cos (φi,◦)) (1)

En (tan (|φi,⋄|)) = E1 (tan (|φi,◦|)) (2)

see the Appendix for more details.



TABLE I

SPECIAL CASES OFEn (cos (φi,◦)) AND En (tan (|φi,◦|))

En (cos (φi,◦))

D
n

1 2 3 4 n

2 2
π

8
π2

24(π−2)

π3
48(π2−8)

π4

3 1
2

2
3

3
4

4
5

n
n+1

En (tan (|φi,◦|))

D
n

1 2 3 4 n

2 ∞
log(16)

π
3(π2 log(4)−7ζ(3))

π3
4(π2 log(4)−9ζ(3))

π3

3 π
2

1 π
4

2
3

√
πnΓ(n−1

2
)

4Γ(1+n/2)

Γ(·) andζ(·) are the gamma and Riemann zeta functions, respectively

ForageHeadingA(r, n, x1, d
plane
goal )

1: xi = x1
2: while xi 6∈ {xgoal} do
3: xi+1 = Greedy(r, n, xi, ĝ1)
4: if dplane

goal −‖(xi+1 − x1) · ĝ1‖ > 0 then
5: xi = xi+1

6: else
7: xi = x ∈ xixi+1 ∩ {xgoal}

ForageHeadingB(r, n, x1, d
plane
goal )

1: xi = x1
2: while dplane

goal − ‖(xi − x1) · ĝ1‖ > r do
3: xi+1 = Greedy(r, n, xi, ĝ1)
4: xi = xi+1

5: xi = xi +
(

d
plane
goal − ‖(xi − x1)ĝ1‖

)

ĝ1

Fig. 4. Notation is similar to Figure 3.x1 is the agent’s initial position.
The goal plane is atg1 = dplane

goal . At iteration i the agent’s location isxi,
andxi+1 is the best point as defined by the greedy algorithm.xixi+1 is the
line segment betweenxi andxi+1, while {xgoal} is a set containing all
points in the goal plane. InForageHeadingA() the robot moves toward
a locally interesting point on the last iteration, but stopsat the goal while
en route. InForageHeadingB() the agent does not forage on the last
iteration, but moves directly to the goal hyperplane.

IV. D IRECTIONAL NAVIGATION WITH FORAGING

In this section we consider the case where an agent’s long-
term goal is to reach a hyperplane located at a distance
dplanegoal from the agent. For example, a geopolitical boundary
(such as country’s border) or geographic boundary (such
as shoreline). Without loss of generality, we assume the
agent’s initial global positionx1 is at the origin and the goal
hyperplane is atg1 = dplanegoal .

The final movement to the goal can be addressed in two
different ways, depending on if the agent favors the short- or
long-term objective on the final move (see Figure 4). In algo-
rithm ForageHeadingA() the agent never forages the last
point that it detects, but moves toward it until reaching the
goal. In algorithmForageHeadingB() the agent moves di-
rectly to the goal whenever it is closer thanr (See Figure 5).
Both of these algorithms maintain the Markov property.
However,En (φi,∗) and En (cos (φi,∗)) remain unchanged

A simulated robot moving to a planer goal (20 trials)
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Fig. 6. Path fromx1 to a planar goal atx = L, and related quantities

for the final iteration of algorithmForageHeadingA(),
while they are not the same for the final iteration of algorithm
ForageHeadingB(). That said,ForageHeadingA() and
ForageHeadingB() are identical on all but the last move;
thus, their differences vanish asr/dplanegoal → 0.

When the goal is a hyperplane atg1 = dplanegoal , all local
gi-axis are parallel due to symmetry. It is possible to define
all local coordinate systems such that the transformation
between them is a translation in theg1-direction. As a result,
statistics regarding theincremental movementbetween states
i and i + 1 are identical at alli such that1 ≤ i < k. For
convenience, we define the global coordinate system to be
the local coordinate system atX1 = x1. Let P∗ be the
path taken by the agent. Formally,{x1, · · · , xk+1} = P∗
such thatX1 = x1, · · · , Xk+1 = xk+1. Recall thatvi,∗ is
the vector defined by thei-th movement alongP∗. Given
our coordinate system,vi,∗ = xi+1 − xi (see Figure 6). Let
∆Xi denote the state transition at iterationi. Then for alli
such that1 ≤ i < k (note i 6= k)

P(∆Xi = vi,∗|Xi−1 = xi−1)≡P(∆Xi = vi,∗)≡P(∆X1 = v1,∗).

Thus, understanding the behavior ati = 1 is equivalent
to understanding the behavior at all other iterations except
i = k. This simplifies the analysis. Further, we have already
evaluated the relevant movement for wheni 6= k in the
previous section, i.e., whenP(∆X1 = v1,∗) ≡ P(X2 =
x2|X1 = x1).
‖P∗‖ =

∑k
i=1 ‖vi,∗‖ is the cumulative length ofP∗. The

rest of this section is devoted to calculating and/or bounding
the expected path lengthEn (‖P∗‖) as simple functions of
En (cos (φi,∗)). Casual readers wishing to skip the details of



the proofs should at least note the statements of Corollaries 2
and 3, as well as the favorable agreement between the
theoretical and experimental results (Figure 7).

Recall thatgi,∗ is the projection ofvi,∗ onto the gi-
axis.‖vi,∗‖ and‖gi,∗‖ are the magnitudes ofvi,∗ andgi,∗,
respectively, andφi,∗ is the angle betweenvi,∗ and gi,∗,
and cos(φi,∗) = ‖gi,∗‖/‖vi,∗‖. Although the value ofk
is random for any particular run ofForageHeadingA()
or ForageHeadingB(), our analysis only requires that
iterationk be the final movement to the goal.En (‖vk,∗‖) is
the expected distance that the agent moves during the final
iteration andEn (‖gk,∗‖) is the length of the projection of
the final movement onto theg1-axis.

Theorem 1: En (‖P∗‖) =
dplane
goal −En(‖gk,∗‖)

En(cos(φ1,∗))
+ En (‖vk,∗‖)

for navigation to a planar goal with foraging.
Proof: By construction and the linearity of expectation

En (‖P∗‖) =
∑k

i=1 En (‖vi,∗‖). Substituting from Lemma 1
gives: En (‖P∗‖) = En(‖vk,∗‖) +

∑k−1
i=1

En(‖gi,∗‖)
En(cos(φi,∗))

. We
know that P(∆Xi = vi,∗) ≡ P(X2 = x2|X1 = x1) for
1 ≤ i < k, and soEn (cos (φi,∗)) = En (cos (φ1,∗)). Also by
construction,

∑k
i=1 ‖gi,∗‖ = dplanegoal and so by the linearity

of expectation, and also thatEn(d
plane
goal ) = dplanegoal , we have

dplanegoal − En (‖gk,∗‖) =
∑k−1

i=1 En(‖gi,∗‖). Substitution
finishes the proof.

Corollary 2: En (‖P∗‖) =
dplane
goal

En(cos(φ1,∗))
for algorithm

ForageHeadingA().
Proof: Lemma 1 is also valid wheni = k because stop-

ping the agent at the global goal (i.e., somewhere between
xk and ℓk,∗) does not changeEn (φk,∗) or En (cos (φk,∗))

Corollary 3:
dplane
goal −r

En(cos(φ1,∗))
+ r ≤ En (‖P∗‖) ≤

dplane
goal

En(cos(φ1,∗))
for algorithmForageHeadingB().

Proof: By construction 0 ≤ En (‖gk,∗‖) ≤ r and
0 ≤ En (‖vk,∗‖) ≤ r.

Figure 7 shows statistics from experiments with asimu-
lated robot superimposed on the expected values predicted
by our analytical results. 10000 experiments are performed
per each algorithm combination. Various values ofd andn
are used, whiledplanegoal = 10 andr = 1. The expected values
and bounds are within0.005% and 0.02% of the average
experimental path length, respectively. Note that we should
expect the bounds to approach an equality asdplanegoal /r → ∞
and/orn→ ∞.

V. POINT TO POINT NAVIGATION WITH FORAGING

We now consider the case where the long-term goal is a
point. The agent uses theForageGoalPoint() algorithm
in Figure 8. Examples of paths taken by a simulated robot
usingForageGoalPoint() are shown in Figure 9.

Without loss of generality, we define the local coordinate
system at eachXi = xi such thatxi is at the origin and
the goal point on thegi-axis. Let dgoal be the distance
betweenXi and the goal. As in the previous section, we
use the local coordinate system atX1 = x1 as our global
coordinate system. However, it is important to note that

Simulated robot results vs. theoretical results (planer goal)
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Fig. 7. Observed statistics over 100000 experimental trialswith a
simulated robot over four different combinations of algorithm, goal behavior,
dimensiond, and local forage pointsn = |Li|. In all experiments sensor
radius r = 1 and dplane

goal = 10. Histograms show the distributions of
experimental path lengths and red-line depicts the mean value. Green line(s)
show the theoretically predicted expectations based on ouranalytical results
(exact value or upper and lower bounds, depending on algorithm).

ForageGoalPoint(r,n,x1,xgoal)

1: xi = x1
2: while ‖xgoal − xi‖ > r do
3: xi+1 = Greedy(r, n, xi, ĝi)

4: xi = xi+1

5: xi = xgoal

Fig. 8. Notation similar to Figures 3
and 4.xgoal is the long-term goal.

Simulated robot, point goal, X10

0 2 4 6 8 10
−1

−0.5
0

ForageGoalPoint(), GreedyHeading(), d=2, n=5

0 2 4 6 8 10
−1

0

1

ForageGoalPoint(), GreedyProximity(), d=2, n=5

Fig. 9. Paths taken
by a simulated robot
navigating from xi = [0, 0] to
xk+1 = [10, 0]. Five paths each
for GreedyHeading() (Top)
and GreedyProximity().
D = 2, n = |Li| = 5, r = 1.

gi,∗ is now defined as the projection ofvi,∗ onto thegi-
axis (and not theg1 axis, in general). Unlike the previous
section,gi-axis andgj-axis are not parallel fori 6= j (with
probability 1). Although the Markov property is maintained,
the computation of an exactEn (‖P∗‖) becomes difficult,
due to the loss of translational symmetry, and we must settle
for computing bounds instead. We begin with a relatively
tight lower bound, before moving on to calculate a loose
upper bound.

The basic idea is to show that the point-goal problem can
be transformed into the plane-goal problem of the previous
section, but that the transformation increases the effective
dplanegoal of the resulting plane-goal problem vs. thedgoal
of the original point-goal problem (see Figure 10). The
transformation involves a rotation at eachXi of the rest of
the problem. Thus, usingdgoal instead ofdplanegoal leads to a
lower bound onEn (‖P∗‖). Casual readers should note the



x1

xgoal

xi

xi+1
φi,∗

gi,∗

g1

vi,∗

dgoal

Fig. 10. Top: Path fromx1 to a point goal atxgoal, and related quantities.
Middle: rotation of the sub-path{xi, · · · , xgoal} does not increase path
length. Bottom: performing rotation for all nodes such thatgi,∗ is parallel
to theg1 axis for all i.

statements of Theorems 2 and 3, as well as the comparison
of theoretical to experimental results in Figure 12.

Lemma 2: Given a pathP∗ = {x1, · · · , xk+1}, Rotating
the sub-path{xi, · · · , xk+1} around xi will not change
‖P∗‖ =

∑k
i=1 ‖xi+1 − xi‖ =

∑k
i=1 ‖vi,∗‖.

Proof:
∑k

i=1 ‖vi,∗‖ =
∑i−1

j=1 ‖vj,∗‖+
∑k

j=i ‖vj,∗‖. It

is obvious that
∑i−1

j=1 ‖vj,∗‖ remains unchanged because
xj for 1 ≤ j ≤ i are not affected by the rotation
of {xi, · · · , xk+1} aroundxi. Also,

∑k
j=i ‖vj,∗‖ remains

unchanged because no scaling occurs when{xi, · · · , xk+1}
is rotated aroundxi, and so‖vj,∗‖ for all i ≤ j ≤ k is the
same before and after the rotation. (see Figure 10-middle)

Theorem 2: For point-to-point long-term navigation with
greedy foraging,En (‖P∗‖) ≥ r +

dgoal−r
En(cos(φ1,∗))

.
Proof: This is a consequence of the triangle inequality

and can be observed by examining a sequence of problems
that have equal path length. Starting ati = 2, and then work-
ing forward for i = {2, · · · , k}, each successive problem is
obtained by rotating the sub-path{xi, · · · , xk+1} aroundxi,
such thatgi,∗ is parallel to theg1-axis, and points in the
positive direction (see Figure 10-bottom). Because rotations
are performed aroundxi, path length remains unchanged by
Lemma 2. Further, we have warped the path such that the
apparent location of the goal from everyxi “was” along
the same heading during the calculation ofℓi,∗. However,
each rotation moves the apparent location of a planar goal
in a non-decreasing manner with respect to theg1-axis
(e.g., increasesdplanegoal ), so dplanegoal =

∑k
i=1 ‖gi,∗‖ ≥ dgoal

by construction. Substituting this into the lower bound of
corollary 3 gives a slightly looser lower bound. We use corol-
lary 3 becauseForageHeadingB() handles movement at
iterationk similarly to ForageGoalPoint().

We now calculate an upper bound onEn (‖P∗‖) by find-
ing an upper bound ondplanegoal . Let ∆ixk+1 be the translation
of xk along theg1-axis due to the rotation of{xi, · · · , xk}
around xi, and let ψi be the angle of that rotation (see
Figure 11).

∑k
i=1 ‖gi,∗‖ = dplanegoal = dgoal +

∑k
i=2 ∆ixk+1.

Lemma 3: ∆ixk+1 ≤ ‖gi−1,∗‖ tan(φi−1)

Proof: It is easy to see (Figure 11) that∆ixk+1 ≤ mi

when |ψi| ≤ π/2. Using similar triangles we also know that
mi ≤ ‖si−1,∗‖ = ‖gi−1,∗‖ tan(φi−1) iff |ψi| ≤ π/4, and for

xi−1 gi−1,∗

vi−1,∗
si−1,∗

xi
φi−1,∗

ψi

mi

gi−1

gi

∆ixk+1

xk+1

Fig. 11. The red (center) and blue (right-most) triangle are similar. ψi is
the angle used to rotate{xi, · · · , xk+1} aroundxi such that thegi-axis
is parallel togi−1-axis, and∆ixk+1 is the resulting shift inxk+1 along
the gi−1 axis.∆ixk+1 ≤ mi by construction, andmi ≤ ‖si−1,∗‖ when
|ψi| ≤ π/4 (which is always).

Simulated robot results vs. theoretical results (point goal)
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Fig. 12. Observed statistics over 100000 experimental trials with a
simulated robot. Dimensiond = 3, forage pointsn = 4, sensor radius
r = 1, anddgoal = 10. Histograms show the distributions of experimental
path lengths and red-line depicts the mean value. Green linesshow the theo-
retically predicted bounds on expectation based on our analytical results. The
upper bound is located at58.2 in the left sub-figure,GreedyHeading(),
and is nonexistent in the right sub-figure,GreedyProximity().

the algorithms we are considering|ψi| ≤ π/4 always.
Theorem 3: En (‖P∗‖) ≤

dgoal

En(cos(φ1,∗))(1−En(tan(|φ1,∗|)))
,

given thatEn (tan (|φ1,∗|)) ≤ 1.
Proof: Using Lemma 3 with the definition of

dplanegoal gives dplanegoal ≤ dgoal +
∑k

i=2 ‖gi−1,∗‖ tan(φi−1).
Taking the expectation and rearranging5 gives:
En(d

plane
goal )≤En(dgoal)+

∑k
i=1En(‖gi−1,∗‖)En (tan (|φi,∗|)).

We observe that En (tan (|φi,∗|)) = En (tan (|φ1,∗|))

and En (dgoal) = dgoal and
∑k

i=2 ‖gi−1,∗‖ ≤ dplanegoal .

Substituting, we get the slightly looserEn(d
plane
goal ) ≤

dgoal + En(d
plane
goal )En (tan (|φ1,∗|)). Rearranging gives:

En(d
plane
goal ) ≤

dgoal

1−En(tan(|φ1,∗|))
, but comes at the price that

we requireEn (tan (|φ1,∗|)) ≤ 1. Substituting this result
into the upper bound in corollary 3 finishes the proof6.

A critical insight from Theorem 3 is that convergence
is not guaranteed by our bound whenEn (tan (|φi,∗|)) ≥ 1.
Unfortunately, this means that the upper bound onEn (‖P⋄‖)
is infinite for GreedyProximity(). On the other hand,
when usingGreedyHeading() En (tan (|φi,∗|)) ≥ 1 only
happens when there are relatively fewn vs.D; and because
En (tan (|φi,◦|)) → 0 and En (cos (φi,◦)) → 1 as n → ∞,
the upper bound onEn (‖P◦‖) shrinks asn increases.

Figure 7 contains statistics on a large number of exper-
iments involving asimulated robot that are performed to

5recall the statistical independence of proximity and angle
6This is a slight abuse of notation, but recall that we made the substitution

dplane
goal = En(d

plane
goal ) in the derivation of Theorem 1, in the first place.

So the factordplane
goal in Theorem 1 can be replaced byEn(d

plane
goal ) before

the final substitution is made in the current proof.



verify the accuracy/tightness of the results that we have
obtained. 100000 experiments are performed per each al-
gorithm combination andd = 3, n = 4, dplanegoal = 10, and
r = 1. The lower bound is less accurate than in the case
of a planer goal, but still within6% of the average ex-
perimental value observed withGreedyHeading() and
12% for GreedyProximity()—it is expected to approach
0% as n → ∞. On the other hand, the upper bound
is very loose forGreedyHeading() and nonexistent for
GreedyProximity(). The latter happens because move-
ment with a positive goal-wise component does not neces-
sarily bring the agent closer to that goal; and provides an
argument to avoid usingGreedyProximity() in the point-
goal scenario.

VI. CONCLUSIONS

We propose and study thenavigation with foragingprob-
lem, where an agent must simultaneously (1) navigate to
a global goal and (2) forage en route as opportunities to
forage are detected. This problem has applications to combat,
scientific exploration, search and rescue, intelligence gath-
ering, and other areas. The problem is interesting because
achieving a long-term objective must happen in parallel
to achieving many small objectives. The latter each cause
a small deviation from the former, and the two types of
objectives occur at very different time scales.

We study two local foraging algorithms: (A) forage the
point that minimizes deviation from the heading of the long-
term goal, and (B) forage the closest point ahead of the agent.
We consider both planar and point long-term goals.

Both analytical and experimental results show that the
average length of the path decreases as global navigation
becomes more important vs. local foraging, i.e., (A) vs. (B).
This decrease is significantly more pronounced for scenarios
with point goals than for scenarios with boundary goals, and
is a consequence of the fact that boundary goals exist at
many locations while point goals exist at a single location.

Our analytical bounds are tight vs. experimental results in
the case of a planar goal, and for the lower bound in the case
of a point goal. On the other hand, our upper bound for the
point goal scenario is loose for (A) and nonexistent for (B).
The latter is a consequence of the fact that movement with a
positive component toward a point goal does not necessarily
reduce the distance to that goal.

The navigation with foraging problem we study is unique
from previous navigation and foraging problems. However,
it may be possible to extend our work in either of the latter
directions. For example, calculating the expected length of
a planned-path in a random environment would undoubtedly
be useful. Adding foraging as a secondary objective in the
context of re-planning algorithms (or vice versa) also seems
like a natural extension to this work.

APPENDIX

This appendix contains the derivation ofEn (cos (φi,◦)),
En (tan (|φi,◦|)), En (cos (φi,⋄)), andEn (tan (|φi,⋄|)).

In general, En (cos (φi,◦)) 6= cos (En (φi,◦)) and
En (tan (|φi,◦|)) 6= tan (En (|φi,◦|)). However, the expec-
tationsEn (cos (φi,◦)), En (tan (|φi,◦|)), andEn (φi,◦) can
be calculated from the probability density functions of
cos(φi,◦), tan(|φi,◦|), and φi,◦—which themselves can be
calculated using order statistics given the probability density
and distribution functions ofcos(φi), tan(|φi|), andφi over
B⊖. For ease of notation, we shall drop the subscript ‘i’
for the intermediate steps of these derivations in which
we consider the quantities relevant to a single iteration of
GreedyHeading().

The distribution functionFφ of φ can be found using the
problem’s geometry. Given our assumptions, the probability
a point is sampled from any particular region of space is
proportional to the Lebesgue measure of that region. Let
Φ denote the hypersector ofB that is bounded by the
revolution ofφ around theg-axis, see Figure 3-Right (e.g.,
if D = 2 then Φ is a sector and ifD = 3 then Φ is a
spherical cone, etc.). LetλB⊖ andλΦ represent the Lebesgue
measure ofB⊖ and Φ, respectively. Thus,Fφ = λΦ

λ
B⊖

.

From [20], we knowλB⊖ = rDπD/2

2Γ(D/2+1) , whereΓ(·) is the
gamma function andλB = 2λB⊖ . From [21] we knowλΦ =
λB⊖Isin2 φ

(

D−1
2 , 12

)

, whereIsin2 φ

(

D−1
2 , 12

)

is the regular-
ized incomplete beta functionIz

(

D−1
2 , 12

)

evaluated atz =

sin2 φ. Thus, Isin2 φ

(

D−1
2 , 12

)

=
B(sin2(φ);D−1

2 , 12 )
B(D−1

2 , 12 )
, where

B
(

D−1
2 , 12

)

andB
(

sin2(φ); D−1
2 , 12

)

are the corresponding
beta function and incomplete beta function, respectively
[22]. Substituting the integral form of the beta functions

yields: Isin2 φ

(

D−1
2 , 12

)

=
∫ sin2(φ)
0 t(D−3)/2(1−t)−1/2dt
∫ 1
0
t(D−3)/2(1−t)−1/2dt

. Note

that φ ranges from0 to π/2 in this calculation, with the
consequences that| sin(φ)| = sin(φ) and | cos(φ)| = cos(φ)
and tan(|φ|) = | tan(φ)| = tan(φ). Also note, cos(φ) is
monotonically decreasing vs.φ on the rangeφ = [0, π/2],
while tan(φ) is monotonically increasing on the range
φ = [0, π/2). This means that while ‘◦’ is being used to
denote the minimum value with respect toφ and tan(φ), it
will denote the maximum value with respect tocos(φ). The
decreasingcos(φ) vs. φ also implies that its corresponding
distribution function isFcos(φ) = 1−Fφ, while the increasing
tan(φ) vs. φ means thatFtan(φ) = Fφ.

Probability density functions ofφ andcos(φ) andtan(φ)
are fφ = F ′

φ and fcos(φ) = F ′
cos(φ) and ftan(φ) = F ′

tan(φ),
respectively, whereF ′

φ and F ′
cos(φ) and F ′

tan(φ) are the
derivatives ofFφ and Fcos(φ) and Ftan(φ) with respect to
φ.

It is now possible to use order statistics to find
the probability density function ofφ◦ and cos(φ◦).
Since φ◦ represents the minimumφ over a set of
size n, we are interested in the first order statistic of
φ. This is fφ◦

= n(1− Fφ)
n−1fφ. Likewise, fcos(φ)◦

is given by the n-th order statistic of cos(φ) as
follows: fcos(φ◦) = fcos(φ)

◦
= n(Fcos(φ))

n−1fcos(φ),
where fcos(φ◦) = fcos(φ)◦ comes from the fact that
cos(φ) is non-increasing on φ = [0, π/2]. Similarly,
ftan(φ)◦ is the first order statistic oftan(φ) as follows:



ftan(φ◦) = ftan(φ)
◦
= n(1 − Ftan(φ))

n−1ftan(φ). Expected
values forφ◦, cos (φ◦), andtan (φ◦) can now be computed:

En (φi,◦) =
∫ π/2

0
φn(1− Fφ)

n−1fφdφ

En (cos (φi,◦)) =
∫ π/2

0
cos (φ)n(Fcos(φ))

n−1fcos(φ)dφ

En (tan (|φi,◦|)) =
∫ π/2

0
tan (φ)n(1− Ftan(φ))

n−1ftan(φ)dφ

Given D and n it is possible to solve for anyEn (φi,◦),
En (cos (φi,◦)), and En (tan (|φi,◦|)). A few cases are
presented in Table I.

We now considerEn (cos (φi,⋄)), and En (tan (|φi,⋄|)),
which are relevant toGreedyProximity(). Note we re-
sume our use of the subscript ‘i’.Although it is possible to
deriveEn (cos (φi,⋄)) andEn (φi,⋄) in a similar fashion to
En (cos (φi,◦)) andEn (φi,◦), respectively, there is a much
easier way based on on the scale symmetry of spherical shells
and the statistical independence of angle and proximity.

Moving any pointℓi,j ∈ B⊖ directly toward or away from
xi changes‖vi,j‖ = ‖ℓi,j − xi‖ but notφi,j , cos(φi,j), or
tan(φi,j). (we can ignore the measure 0 set whereℓi,j = xi
and φi,j is undefined, as well as the measure 0 set where
φi,j = π/2 and tan(φi,j) is undefined).

Let B⊖
i,r̃ denote the level-set ofB⊖

i that is the half-
spherical shell located at radiusr̃, where0 < r̃ ≤ r. That is,
B⊖

i,r̃ =
⋃

x for all x such thatr̃ = ‖x− xi‖. Let B⊖
i,r̃⋄

be
the particular level-set such thatℓi,⋄ ∈ B⊖

i,r̃⋄
. Given our i.i.d

uniform sampling assumptions, with probability1 there is
only one member ofLi∩B

⊖
r̃i,⋄

, and this member isℓi,⋄. Thus,
the problems of calculatingEn (φi,⋄) and En (cos (φi,⋄))
andEn (tan (|φi,⋄|)) for Li ⊂ B⊖

i are reduced to calculat-
ing En (φi,⋄) and En (cos (φi,⋄)) and En (tan (|φi,⋄|)) for
a single point ℓi,⋄ drawn randomly fromB⊖

i such that
ℓi,⋄ ∈ B⊖

i,r̃⋄
wherer̃⋄ = ‖ℓi,⋄ − xi‖. The scale symmetry of

B⊖
i,r̃ for 0 < r̃ ≤ r with respect toPn(φi,j = φi|ℓi,j ∈ B⊖

i,r̃),
gives:

Pn(φi,⋄) = Pn(φi,⋄|ℓi,⋄ ∈ B⊖
i,r̃⋄

) = Pn(φi,⋄|ℓi,⋄ ∈ B⊖
i,r)

In other words, replacing̃r⋄ with any other valuẽr ∈ (0, r]
will yield identical results vs.En (φi,⋄) andEn (cos (φi,⋄))
and En (tan (|φi,⋄|)) because it will not changeφi,⋄ or
cos (φi,⋄) or tan (|φi,⋄|). For convenience, we usẽr = r.

Again using scale symmetry and statistical independence,
we realize that any pointℓi,j ∈ B⊖

i can be projected directly
away fromxi to the surface ofB⊖

i without affectingφi,j
or cos (φi,j) or tan (|φi,⋄|). Therefore, calculatingEn (φi,⋄)
andEn (cos (φi,⋄)) for a single pointℓi,⋄ drawn randomly
from B⊖

i such thatℓi,⋄ ∈ B⊖
i,r is the dual of calculating

En (φi,⋄) and En (cos (φi,⋄)) for a single pointℓi,⋄ drawn
randomly fromB⊖

i . Finally, when only one point is drawn
from B⊖

i then, by construction,GreedyHeading() and
GreedyProximity() must return the same result. Thus
En (φi,⋄) = E1 (φi,◦), andEn (cos (φi,⋄)) = E1 (cos (φi,◦)),
andEn (tan (|φi,⋄|)) = E1 (tan (|φi,◦|)).
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