
Monitoring Access to User Defined Areas with
Multi-Agent Team in Urban Environments

Manas Gupta, Ming C Lin, Dinesh Manocha, Huan Xu, and Michael Otte

Abstract— We present an algorithm that determines where
the members of a multi-agent team or swarm should be
deployed in order to efficiently monitor access to a user specified
region of interest. Our algorithm attempts to minimize the
number of agents required to guarantee that any incursion
into the region of interest is detected. The algorithm works
by analyzing the geometric structure of the environment, and
placing agents at advantageous positions in the environment,
such as bottlenecks, to create a defensive perimeter of agents
alongside physical obstacles (e.g. buildings). We demonstrate
the usefulness of the algorithm through experimental simula-
tions in an urban environment, and show how the min-cuts
subroutine (used to reduce the number of agents required) can
be implemented in a distributed way across the multi-agent
team to enable better solutions to be found more quickly.

I. INTRODUCTION

Autonomous robots are used for a variety of surveillance
missions in both civilian and non-civilian contexts. From per-
forming night-watch security in factories and shopping malls,
to providing intelligence about humanitarian disasters and
conflict zones; autonomous teams are often a cost effective
way to enhance and extend human capabilities and/or to keep
humans out of harm’s way. We consider a non-standard twist
on the multi-agent autonomous surveillance problem. While
standard autonomous surveillance problems typically involve
monitoring an entire area or finding/tracking all adversaries
within it, we are interested in autonomously monitoring
all routes of access into an area.

By simultaneously monitoring all access routes into an
area (Figure 1), potential intruders can be detected before
they enter the area. This is useful because it enables the
multi-agent team to either prevent the incursion or, alter-
natively, to monitor the adversary’s passage through the
area. We formalize this problem as the Isolation Region
Surveillance Problem, and study a variant in which the goal
is to solve the problem with minimum number of agents.
We call latter problem variant the Minimum Robot Isolation
Region Surveillance Problem.

While related isolation region problems have been studied
in a graph theoretic context [1], [2], [3], we are interested
in extending such ideas to a three-dimensional geometric
scenario. In particular, robots with sensors operate in a three-
dimensional environment that contains polytopal obstacles,
adversaries are restricted to ground-level movement, and
the ground-level obstacles experienced by adversaries are
equivalent to the polygonal footprints obtained by projecting

*The authors are with the University of Maryland College Park. This
work was supported by DARPA cooperative agreement HR00111820028 as
part of DARPA OFFSET.

A: Area of Interest B: Naive Placement C: Our Method

Fig. 1. A: Map of an urban environment projected onto the ground-plane
X ⊂ R2 with obstacles Xobs (dark) and a user defined region of interest
Xint (orange) for which access must be monitored or guarded. B: Many
agents (dark dots) may be required to cover the boundary of Xint with
sensors (blue discs). C: Our method uses fewer agents by placing agents at
the bottlenecks created by obstacles. This creates a safe region of isolation
Xiso (shaded blue area) containing the region of interest, Xint ⊂ Xiso.

obstacles down onto the ground-plane. Other assumptions
include: Agents have reliable communication; adversaries
have nonzero volume, the environment is adversary free until
agents reach their assigned monitoring locations; and agents
have downward-facing cameras (as with drones) that must
be used below a maximum height.

One difference between our work and previous work is that
a geometric model of the (urban) environment is provided as
input. This model is discretized as a function of the camera
height and field-of-view to obtain both: (1) A triangulation
of the ground-surface, and (2) a graph that encodes the
connectivity between the triangles. A min-cut of (2) provides
a set of triangles that, combined with obstacles, separates the
surveillance area from the environmental boundary. We prove
that placing agents to observe each triangle in this set guar-
antees that any adversary moving from the environmental
boundary to the surveillance area will be observed.

This paper is organized as follows: Section II contains
a discussion of related work, nomenclature is described
in Section III, and a formal problem definition appears in
Section IV. The algorithm and it analysis appear in Section V
and VI, respectively. Experiments involving a simulated
urban environment appears in Section VII, a discussion of
results in Section VIII, and our conclusions in Section IX.

II. RELATED WORK

Previous methods that consider graph topology when
placing agents for surveillance or capture missions include
[4], [5], [6] and [7]. In [4] the search domain is represented
as a traversability graph, and the graph is modified into a
tree by placing robots on edges to remove cycles. In [5], a



surveillance algorithm is proposed that solves a contiguous
search problem and calculates the minimum number of
agents required to capture an intruder. Similarly, [6] uses a
decentralized control strategy to patrol user specified points,
while agents coordinate in a decentralized way. In [7], a
distributed multi-agent system is tasked with monitoring a
graph-based environment, some of which may be unknown
at the beginning of the mission. Our work differs from [4],
[5], [6], [7] in three ways: we consider the three-dimensional
geometry of the environment, we seek to isolate a region of
interest from the map’s boundary, and the connectivity graph
is created at run-time as a function of the environment’s
geometry and the robots’ sensor properties.

An “area of interest” is used in [8], which minimizes the
time required to actively cover the entire area by computing
the minimal convex cover and then finding shortest multi-
path using Tabu Search. Work in [9] solves a related “graph-
clear” problem that calculates a multi-path such that any
intruders within the area will be detected. Our work differs
from [8] and [9] in that we are interested in detecting
adversaries before they enter the region of interest.

Other work on autonomous surveillance considering cam-
era sensor properties includes: [10], [11], [12]. Bora et al
[10] demonstrate surveillance over a roadmap by detecting
the intruders in the environment using a network of au-
tonomous vehicles with on board cameras. Semsch et al
[11] generate trajectories for each UAV by considering the
on-board camera’s field of view, and then minimizing the
average time between consecutive views of points in the area.
Geng et al [12] solve a similar problem; a set of vantage
points are calculated (placing a camera at each point would
enable the entire area to be viewed at once), and individual
paths between vantage points are calculated based on the
assignment of vantage points to UAVs. While [10], [11] and
[12] are interested in moving through the environment to
continuously monitor an entire area, we are interested in
guaranteeing that all adversaries are observed before they
enter a particular area.

Surveillance is closely related to coverage and target
search, which may involve either actively moving [13], [14],
[15] or with stationary [16], [17] agents. In [17] Kazakis
et al demonstrate an approach to guard a 2D area with
small number of mobile agents having on board camera with
limited visibility. The survey paper [18] contains pointers to
additional related work.

Our work uses a Delaunay triangulation and its Vornoi
dual. Delaunay triangulation has previously been used to
solve various robotics problems, as in [19] and [20] for
computing the collision free trajectories. In [21] Delaunay
triangulation is used to model discrete point data from the
segmented image for information extraction of cultivated
land by UAVs. Other applications can be found in [22],
[23]. Delaunay triangulation is the dual of the Voronoi graph,
a relationship that has been central to applications of path
planning, e.g., [19], [20], [24]. A Delaunay triangulation of
a point set can be modified if points are inserted or removed

Projection from X 3 to X . Regions and Boundaries.

X 3

X

X 3
obs

i

Bi

Xobs

Xfree

Xint

Bi

Xobs

Xfree

δX
Xiso

δXiso

Xint

δXint

Bi

X
δX

Xint

δXint

Xiso

δXiso

Fig. 2. Various quantities related to spatial regions in X 3 and X (left)
and X (right).

from the set [25], [20].

III. NOMENCLATURE

We now define the nomenclature used throughout this
paper (Figure 2 depicts selected quantities). The three-
dimensional workspace in which the robots operate is de-
noted by X 3 ⊂ R3. The obstacle space X 3

obs and free space
X 3

free are the subsets of X 3 that contain obstacles and do
not contain obstacles, respectively; X 3

obs,X 3
free ⊂ X 3. The

projections of X 3, X 3
obs, and X 3

free straight down onto the
(two-dimensional) ground-plane are denoted X , Xobs, and
Xfree, respectively. We refer to projections from X 3 onto X
as footprints. Assuming that each robot i has a downward
facing camera with a conic field of view, the footprint of this
field of view is a sensor disc Bi ⊂ X . While we assume Bi

is a disc, our method can also be used with other sensor
footprint shapes by considering the largest disc that they
contain. We assume a robot sensor footprint is larger than
the projection of the robot itself, i.e., its volume, onto the
ground-plane.

The area that the user decides to monitor is called the
Region of Interest and is denoted Xint ⊂ X . The perimeter of
Xint is called the Region of Interest Boundary1 and denoted
δXint. Note that δXint separates Xint from the rest of X and
is guaranteed by Jordan curve theorem. The map boundary
is the one-dimensional perimeter of the two-dimensional
ground projection X and denoted δX .

An important region calculated by our method is the
Region of Isolation Xiso, where Xint ⊂ Xiso ⊂ X . The
Region of Isolation Boundary is denoted δXiso and is—
by definition—created from (and covered by) a com-
bination of obstacles and agent sensor discs. Formally,
δXiso ⊂ Xobs ∪

(⋃
i∈[1,n]Bi

)
. Indeed, the main purpose of

our method is to place Bi to create δXiso with interior Xiso

such that Xint ⊂ Xiso ⊂ X—and to do so using the fewest
number of agents possible.

We assume that adversaries travel at ground-level and
are constrained to travel through Xfree. A valid adversary
path π is a curve through Xfree that moves from a start
position on the boundary of the map, xstart ∈ δX , to a goal

1In practice, δXint can be defined by a cycle of line segments or other
well behaved point-wise continuous and closed curves.



position within the area of interest, xgoal ∈ Xint. Formally,
π is a continuous mapping π : [0, 1]→ Xfree such that
π(0) = xstart ∈ δX and π(1) = xgoal ∈ Xint.

Our method relies on a subroutine that computes a Delau-
nay Triangulation D with respect to a set of discrete points
P ∈ X , where P is either a random set calculated iteratively,
or chosen from a predefined lattice. Triangle regions within
the Delaunay Triangulation are denoted T ∈ D. The dual2

of a Delaunay Triangulation is a Voronoi Partitioning, and
the latter provides an undirected graph that encodes the
connectivity between the triangle regions in the Delaunay
Triangulation. In general, a graph G = (V,E) consists of
a set of vertices v ∈ V and edges e ∈ E. Two vertices
v and u are considered neighbors if there exists an edge
e = (u, v) that connects them. In an undirected graph,
e = (u, v) ∈ E ⇐⇒ e = (v, u) ∈ E. There is a one-
to-one correspondence between triangles in the Delaunay
Triangulation Tj ∈ D and nodes in the Voronoi graph vj ∈
V .

Karger’s Min-Cut Theorem (from [1]): A Min-cut of an
undirected graph G = (V,E) is a partition of two vertices
v, u into two non empty group of vertices V1 and V2 such
that V = V1 ∪ V2 and V1 ∩ V2 = ∅ with minimum number
of edges crossing between them.

IV. PROBLEM DEFINITION

In this section we formally define the two problems that
we investigate. Recall that the user defines the region of
interest Xint. By definition, δXiso has the property that
δXiso ⊂ Xobs ∪

(⋃
i∈[1,n]Bi

)
.

Problem 1, The isolation region surveillance prob-
lem: Can n robots be placed to form δXiso such that
Xint ⊂ Xiso ⊂ X ? which is a trivial condition to monitor
access to Xint. If a valid Xiso is found, then by construction,
any valid adversary path (from the map boundary into the re-
gion of interest) necessarily intersects δXiso ∩ Xfree, and by
construction for all x ∈ δXiso such that x ∈ δXiso ∩ Xfree

it is guaranteed that x ∈ Bi for some i.
Problem 2, The minimum robot isolation region surveil-

lance problem: Find the minimum n that solves Problem 1.

V. ALGORITHM

Pseudo code for our method appears in Algorithm 1,
and the geometric and graph theoretic effects of the major
subroutines are illustrated in Figure 3.

The algorithm starts by using Footprint(X 3) to extract
the ground-plane free space Xfree and the ground-plane
obstacle space Xobs from the geometry of the work space
X 3 based on buildings in the environment, etc. (line 1). An
initial point set P is sampled on the interface of Xfree and
Xobs, as well as along the boundaries of the region of interest
and map, δXint and δX , respectively. The initial sampling
is accomplished using InitPoints(Xfree,Xobs, δXint, δX ),
line 2. Along each boundary, consecutive points must be

2Each can be calculated from the other.

A: Raw X with Xint. B: Delaunay Triangulation.

C: Connectivity Graph in Xfree. D: Clubbing Nodes in Xint.

E: Finding Min Cuts. F: Robot Positions.

Fig. 3. The major steps in our method are depicted in A-F. Given a raw
map of the environment and a user defined region of interest Xint (orange)
within the map, we find the Delaunay triangulation (B) that is based on
robot sensor radius, and the resulting connectivity graph (C, purple) which
can found from the subset of the triangulation’s Voronoi graph dual (in
particular, the subset of the dual graph in Xfree). All nodes in the region of
interest Xint are clubbed into a single source node (D). All nodes along the
map boundary are also clubbed into a single sink node (not shown). Given
the graph, source, and sink, we find the min-cuts—a set of edges (E, red)
who’s removal will separate the source and sink in two different connected
components of the graph (E, light blue and black, respectively). The min-
cuts are associated with triangles (C-D, dark blue), and each triangle is
guaranteed by construction to fit inside a robot’s sensor disc (E, dark blue)
and to be un-occluded by obstacles. Placing robots accordingly, sensor discs
and obstacles define the boundary of the region of isolation Xiso (E, blue)
that contains the region of interest, Xint ⊂ Xiso.

Algorithm 1: monitorAccess(X 3,Xint)

1 (Xfree,Xobs)← Footprint(X 3) ;
2 P ← InitPoints(Xfree,Xobs, δXint, δX ) ;
3 while exists T ∈ D s.t. circle(T ) > B do
4 P ← P ∪ {SamplePoint(Xfree,Xobs, T )} ;
5 D ← IterativeDelaunay(P ) ;
6 end
7 G← VornoiDual(D) // (V,E) = G ;
8 (G, vS , vT )← MergeNodes(G,Xint, δX ) ;
9 AgentPositions ← MinCuts(G, vS , vT ) ;

10 return AgentPositions ;



sampled no further from each other than the width of
a robot sensor disc. Next, P is iteratively expanded un-
til all triangles T in its Delaunay Triangulation D have
circumcircles3 circle(T ) that are no larger than a robot
sensor disc B (lines 3-4). In Section VI we show that
enforcing the condition that circumcircle centers are located
within their corresponding triangles is a sufficient (but not
necessary) condition to guarantee correctness and resolution
completeness. While this can be done in a variety of ways,
we recommend sampling new points based on the triangle
that has the largest circumcircle (though care must be taken
to add more boundary points when center of the circumcircle
is outside the corresponding triangle).

Once an appropriate Delaunay Triangulation has been
computed, we calculate the connectivity graph Gv between
the triangles using its the Voronoi dual (line 7). Because the
graph is the dual of Delaunay triangulation, each triangle is
associated with exactly one circumcircle, and so this provides
the connectivity structure that we require.

The graph is post-processed by merging all nodes along
the map boundary into a single source node vS , and merging
all nodes in the region of interest into a single sink node
vT ; the subroutine MergeNodes(G,Xint) is responsible for
performing both of these merging (line 8).

The final agent positions are calculated using
MinCuts(G, vS , vT ) and then returned (lines 9-10). A
variety of algorithms exist that can perform the s-t (source-
sink) variant of min-cuts that we require. In our experiments
we use Karger’s Min-cut algorithm because it can be
implemented in a distributed fashion across the robot team.
Karger’s Min-cut algorithm assumes that edges are assigned
weights, and each edge is given an equal weight of 1.

Final agent locations represent the circumcircle centers of
the corresponding triangles in the Delaunay Triangulation,
such that an agent deployed at a particular circumcircle
center have the entire triangle within its sensor disc. More-
over, the union of obstacles and all triangles containing
agents creates a boundary around the region of interest
(Figure 3-F). Formally, we are guaranteed the existence of
a δXiso such that δXiso ⊂ Xobs ∪

(⋃
i∈[1,n] Ti

)
, and by

construction Ti ⊂ Bi for all i ∈ [1, n].

VI. ANALYSIS OF ALGORITHMIC PROPERTIES

The algorithm in Section V efficiently solves Problem 1,
and finds an approximate solution for Problem 2. The so-
lution of problem 2 is an approximation for two reasons.
First, the discretization of the map into triangles may not be
optimal for the particular environment considered. Second,
Karger’s min-cut algorithm is stochastic in nature, and (if
used) provides an approximate solution that is also stochastic
in nature. We now discuss the algorithmic properties of the
algorithm in more detail, considering both what happens
when Karger’s min-cut algorithm is used, and also (sepa-
rately) the case when an optimal min-cuts algorithm is used.

3The circumcircle circle(T ) of a triangle region T is the unique circle
defined such that the three vertices of the triangle are located on the circle.

Assuming that balls and simplicies are closed sets, the
following proposition is a well known fact from geometry.

Proposition 1: In d-dimensional space, the volume of any
simplex is a subset of the volume of the ball that is uniquely
defined by assuming that the (d+1) vertices of the simplex
are located on the surface of the ball.

In R2 a simplex is a triangle T , and a ball is a disc B.
Thus, Proposition 1 implies that T ⊂ B ⊂ R2. By definition,
the boundary of the particular disc B that is uniquely defined
by a triangle T is called the triangle’s circumcircle.

The following (Proposition 2) is true by the construction
of our algorithm.

Proposition 2: For each T ∈ D, the circumcircle of T is
smaller than a robot’s sensor disc, T ⊂ Bi for all i.

The following (Lemma 1) is a building block that we will
use shortly.

Lemma 1: Given an absence of local obstacle occlusions
between Ti ∈ D and the center of the circumcircle of Ti, a
robot i located at the center of the circumcircle of Ti will
have Ti ⊂ Bi.
Proof: This follows directly from Propositions 1 and 2. �

Lemma 2: If the center of the circumcircle of Ti is located
within Ti ⊂ D ∩ Xfree, then a robot i placed at the center
of the circumcircle of Ti will have a full view of Ti.
Proof: The definition of convexity4, the fact that triangles
are convex, and our assumptions on the projection from X 3

to X means that there are no obstacles from X 3
obs occluding

subsets of Ti from i, and so Lemma 1 may be applied. �
On the other hand, we also note the following:
Lemma 3: If the center of the circumcircle of T is not

located within T , and T ⊂ Xfree, then it is possible that the
view of T may be occluded by X 3

obs.
Proof: This happens, e.g., whenever the circumcircle center
of a triangle and the triangle are separated by an obstacle. �

The following is a Corollary of Lemma 2.
Corollary 1: If, for all T ∈ D the center of the curcumcir-

cle of T is located within T , then any adversary movement
between two adjacent triangles T1, T2 ∈ D ∩ Xfree will be
detected by an agent that is placed at the center of either of
the corresponding circumcircles of T1 or T2.

Remark: A minimum s− t cut results in the source s
and target t nodes being in two separate sub graphs. This
is required for our method. There are many versions of the
global min-cut algorithms which run in polynomial time, e.g.,
Stoer and Wagner [3].

Theorem 1: If, for all T ∈ D the center of the circum-
circle of T is located within T , then our method will place
agents such that an adversary moving from the map boundary
to the region of interest will be observed.
Proof: The dual between the Delaunay Triangulation and
Voronoi graph (which is homomorphic to our un-clubbed
connectivity graph), combined with our assumption of
nonzero adversary volume and the fact that clubbing nodes

4A convex shape is defined by the property that for any two points x1
and x2 in the shape, the line segment x1x2 is fully contained in the shape.



in Xint changes the graph only within Xint (and clubbing
map boundary nodes is similarly benign), guarantees that a
min-cuts solution (indeed, even a sub optimal approximation
to the min-cut) will return a set of edges, such that removing
the edges will disconnect the region of interest Xint from the
map boundary δX . Placing agents at either end of each edge
in the removal set—i.e., at the center of the circumcircle
of either of the two triangles associated with the edge—
guarantees that an adversary moving from the map boundary
to the region of interest will be observed. �

We now consider correctness and resolution completeness,
assuming that “resolution” is defined by the specific trian-
gulation that is used (the size of triangles being smaller than
robot sensor radius by construction in our algorithm).

Theorem 2: If the min-cuts subroutine that is used is
correct and complete, and for all T ∈ D the center of the
circumcircle of T is located within T , then the method we
present is correct and resolution complete
Proof: Correctness follows from Theorem 1, the correctness
of iterative Delaunay Triangulation, and the correctness of
min-cuts. Resolution completeness follows from the com-
pleteness of iterative Delaunay Triangulation. If a regular
triangular lattice is used instead, then correctness and com-
pleteness follow from the correctness and completeness of
creating a triangular lattice within a region of finite area. �

Alternatively, if a the stochastic min-cuts algorithm is used
(as in our experiments), then our method inherits the usual
probabilistic caveats that this entails.

Theorem 3: If the min-cuts subroutine that is used is
probabilistically complete, then the method we present is
correct; it is also resolution complete with probability one,
in the limit, as the number of iterations tends toward infinity.
Proof: Due to probabilistically completeness, the probability
that an optimal min-cuts solution is never found approaches
zero, as the number of iterations approaches infinity. �

To summarize, using randomized min-cuts procedure5

sacrifices completeness, but retains correctness. On the other
hand, the benefit of using randomized min-cuts algorithm
is that it can be parallelized across the swarm, and tends
to find decent solutions in practice—as demonstrated in the
next section.

While we have obtained results for completeness and
correctness, we are unable, at present, to determine if the
algorithm is resolution optimal, even in the case that an
optimal min-cuts algorithm is used.

We end this section by discussing a technical detail. Our
presentation has assumed that the ground-level projection of
free-space is sufficient to understand how adversaries might
move between different ground-level patches of free space. If
(as has been assumed in our experiments) adversaries cannot
climb or enter obstacles and obstacles do not overhang the
ground-plane, then this assumption is valid. Otherwise, any
routes that connect different parts of the free space must

5Karger’s algorithm has a nonzero probability of finding the optimal
cutting each time it is run, thus a procedure that involves running it over-
and-over with different random numbers is probabilistically complete.

A: More cluttered environment.

B: Less cluttered environment.

Fig. 4. Simulation results showing the placement of agents (blue) to
monitor two different Xint (orange) with different Xobs (black) and having
different B.

Fig. 5. Plot of Number of Agents vs. number of Obstacle for iterative
Delaunay Triangulation and constant lattice over 50 Monte Carlo repeats
for each number of obstacles.

be explicitly added to Xfree, so that the method can assign
agents to guard such passages as necessary.

VII. EXPERIMENTS

A. Comparison of triangulation methods

In our first experiment we compare the Voronoi-Delaunay
method of creating the space portioning cells and motion
graph to a modified version of algorithm that uses a regular
lattice structure. The lattice structure partitions the map into
triangles (note that this results in a Delaunay Triangulation
with equidistant points evenly spaced throughout the map
such that Bi and Ti have collocated center points for all i).

We test both versions on environments containing between
0 and 50 obstacles, where the locations of the obstacles are
determined randomly6. 50 Monte Carlo trials are run for each
method for each number of obstacles. Results reporting the
mean number of agents required to isolate a specific Xint. All
experiments use Karger’s Mincut algorithm, which is non-

6A point is sampled randomly from the sample space of the map and an
obstacle is build around that point



Fig. 6. Plot of Mean and standard deviation for iterative Delaunay
Triangulation and constant lattice over 50 Monte Carlo repeats for each
number of obstacles.

Fig. 7. Plot of Mean Number of Agents vs. Number of Obstacles over 50
Monte Carlo repeats for each number of obstacles. Note that each CPU is
located on a different agents.

deterministic (in all cases the Karger’s subroutine uses the
best solution found in 50 iterations).

B. Multi-agent parallelization

Karger’s Mincut algorithm is both non-deterministic and
can easily be parallelized over a multi-robot team by having
each agent’s CPU run the algorithm with different random
seeds. Therefore, in our second experiment we investigate
benefits of parallelizing the Karger’s Mincut subroutine over
the multi-agent system.

We are interested in evaluating the maximum benefit
that parallelization may yield, and therefore assume perfect
communication between the agents. We perform multiple
trials for teams sized from 1 to 10 agents operating in envi-
ronments with 0 to 50 obstacles. Each run of the experiment
involves all agents in the team performing 50 restarts of
Karger’s Mincut algorithm in parallel. 50 Monte Carlo re-
peats are performed for each combination of algorithm, team
size, and obstacle number. in order to generate performance

statistics. A phase consists of 500 iterations and the minimum
number of agents after each phase is recorded as shown in
Fig.5. The mean results on the number of agents required to
monitor for different number of obstacles in the environment
is shown in Fig. 7.

VIII. RESULTS

In general, the algorithm requires fewer agents in envi-
ronments that contain more obstacles. Note that the number
of agents required becomes zero once the region of interest
is completely surrounded by obstacles (in which case no
paths exists from the map boundary into the region of
interest and hence no agent is required to monitor them).
Naively covering a particular region of interest boundary
requires a constant non-zero number of agents. The trend
of decreasing agent requirements as a function of obstacle
count demonstrates the method is useful.

The plot in Fig.5 shows that when the number of obstacles
were small to moderate (1 to 40 in our experiments) using
a Delaunay Triangulation was slightly better, on average,
than using a predefined triangular lattice. However, in very
cluttered environments (40-50 obstacles) the triangular lattice
had better performance. We believe that this happens because
the flexibility of iterative Delaunay Triangulation enables the
algorithm to adjust the number of triangles according to the
shape, size, position and number of obstacles in the map
where as predefined lattice fails to do so.

As seen from Fig. 7 the distributed parallelization of
Karger’s Mincut algorithm across the multi-agent team leads
to better performance for the algorithm as the number of
agents involved in the computation increases. This result is
intuitive — 10 agents with 50 iterations each contribute to
500 restarts of the algorithm, as compared to 2 agents with
100 iterations contributing 200 restarts. Thus, increasing the
agents increases the computing power of the system, which
in turn provides a better solution in the same amount of
(wall-clock) time.

IX. CONCLUSIONS

We present an algorithm that enables a multi-agent team
or swarm to efficiently monitor a user specified area of
interest against adversarial incursion. The algorithm works
by analyzing the geometric structure of the environment,
and placing agents at positions in the environment, such as
bottlenecks, that collectively surround the region of interest
by a combined perimeter of agents and physical obstacles.
We believe that the same basic idea can be modified work
with other types of environmental models, such as occupancy
grids and other space partitioning data structures.

We experimentally demonstrated the usefulness of the
algorithm in number of experiments in a simulated urban
environment. Moreover, we demonstrated that an important
subroutine (Karger’s Mincut algorithm) can be parallelized
across the multi-agent team, leading to better solutions being
calculated, on average, in the same amount of time.



REFERENCES

[1] D. R. Karger and C. Stein, “An õ (n 2) algorithm for minimum cuts,”
in STOC, vol. 25, 1993, pp. 757–765.

[2] ——, “A new approach to the minimum cut problem,” Journal of the
ACM (JACM), vol. 43, no. 4, pp. 601–640, 1996.

[3] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal of the
ACM (JACM), vol. 44, no. 4, pp. 585–591, 1997.

[4] F. Katsilieris, M. Lindhé, D. V. Dimarogonas, P. Ögren, and K. H.
Johansson, “Demonstration of multi-robot search and secure,” in IEEE
ICRA, Anchorage, AK, USA, 2010.

[5] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro, “Capture of an
intruder by mobile agents,” in Proceedings of the fourteenth annual
ACM symposium on Parallel algorithms and architectures. ACM,
2002, pp. 200–209.

[6] N. K. Advani, “Decentralized control of an energy constrained het-
erogeneous swarm for persistent surveillance,” Masters Thesis, 2017.

[7] C. Trevai, J. Ota, and T. Arai, “Multiple mobile robot surveillance
in unknown environments,” Advanced Robotics, vol. 21, no. 7, pp.
729–749, 2007.

[8] D. Anisi and P. Ögren, “Minimum time multi-ugv surveillance,” in
Optimization and Cooperative Control Strategies. Springer, 2009,
pp. 31–45.

[9] A. Kolling and S. Carpin, “The graph-clear problem: definition, theo-
retical properties and its connections to multirobot aided surveillance,”
in 2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2007, pp. 1003–1008.

[10] D. Borra, F. Pasqualetti, and F. Bullo, “Continuous graph partitioning
for camera network surveillance,” IFAC Proceedings Volumes, vol. 45,
no. 26, pp. 228–233, 2012.

[11] E. Semsch, M. Jakob, D. Pavlicek, and M. Pechoucek, “Autonomous
uav surveillance in complex urban environments,” in Proceedings
of the 2009 IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology-Volume 02. IEEE
Computer Society, 2009, pp. 82–85.

[12] L. Geng, Y. Zhang, J. Wang, J. Y. Fuh, and S. Teo, “Mission
planning of autonomous uavs for urban surveillance with evolutionary
algorithms,” in 2013 10th IEEE International Conference on Control
and Automation (ICCA). IEEE, 2013, pp. 828–833.

[13] S.-W. Ryu, Y.-h. Lee, T.-Y. Kuc, S.-H. Ji, and Y.-S. Moon, “A search
and coverage algorithm for mobile robot,” in 2011 8Th international
conference on ubiquitous robots and ambient intelligence (URAI).
IEEE, 2011, pp. 815–821.

[14] S. A. Sadat, J. Wawerla, and R. Vaughan, “Fractal trajectories for
online non-uniform aerial coverage,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
2971–2976.

[15] P. DeLima and D. Pack, “Maximizing search coverage using future
path projection for cooperative multiple uavs with limited communi-
cation ranges,” in Optimization and Cooperative Control Strategies.
Springer, 2009, pp. 103–117.

[16] L. Wu, M. Á. G. Garcı́a, D. P. Valls, and A. S. Ribalta, “Voronoi-based
space partitioning for coordinated multi-robot exploration,” Journal of
Physical Agents, vol. 1, no. 1, pp. 37–44, 2007.

[17] G. D. Kazazakis and A. A. Argyros, “Fast positioning of limited-
visibility guards for the inspection of 2d workspaces,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, vol. 3.
IEEE, 2002, pp. 2843–2848.

[18] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion
in mobile robotics,” Autonomous robots, vol. 31, no. 4, p. 299, 2011.

[19] S. A. Bortoff, “Path planning for uavs,” in Proceedings of the 2000
American Control Conference. ACC (IEEE Cat. No. 00CH36334),
vol. 1, no. 6. IEEE, 2000, pp. 364–368.

[20] D. Yershov, M. Otte, and E. Frazzoli, “Fast collision checking:
From single robots to multi-robot teams,” in In IEEE International
Conference on Robotics and Automation, Workshop on optimal robot
motion planning (WORMP), 2015.

[21] L. Ma, L. Cheng, W. Han, L. Zhong, and M. Li, “Cultivated land
information extraction from high-resolution unmanned aerial vehicle
imagery data,” Journal of Applied Remote Sensing, vol. 8, no. 1, p.
083673, 2014.

[22] R. Zhu, D. Sun, and Z. Zhou, “Cooperation strategy of unmanned air
vehicles for multitarget interception,” Journal of guidance, control,
and dynamics, vol. 28, no. 5, pp. 1068–1072, 2005.

[23] Y. Qu and Q. Tian, “Multi-uav cooperative positioning based on delau-
nay triangulation,” in 2010 International Conference on Computational
Aspects of Social Networks. IEEE, 2010, pp. 401–404.

[24] R. Dai and J. Cochran, “Path planning and state estimation for un-
manned aerial vehicles in hostile environments,” Journal of guidance,
control, and dynamics, vol. 33, no. 2, pp. 595–601, 2010.

[25] M. A. Mostafavi, C. Gold, and M. Dakowicz, “Delete and insert
operations in voronoi/delaunay methods and applications,” Computers
& Geosciences, vol. 29, no. 4, pp. 523–530, 2003.


