
Free-configuration Biased Sampling for Motion Planning

Joshua Bialkowski, Michael Otte, and Emilio Frazzoli

Abstract— In sampling-based motion planning algorithms the
initial step at every iteration is to generate a new sample from
the obstacle-free portion of the configuration space. This is
usually accomplished via rejection sampling, i.e., repeatedly
drawing points from the entire space until an obstacle-free
point is found. This strategy is rarely questioned because
the extra work associated with sampling (and then rejecting)
useless points contributes at most a constant factor to the
planning algorithm’s asymptotic runtime complexity. However,
this constant factor can be quite large in practice. We pro-
pose an alternative approach that enables sampling from a
distribution that provably converges to a uniform distribution
over only the obstacle-free space. Our method works by storing
empirically observed estimates of obstacle-free space in a point-
proximity data structure, and then using this information to
generate future samples. Both theoretical and experimental
results validate our approach.

I. INTRODUCTION

Sampling-based motion planning algorithms have proven
to be effective tools for finding solutions to otherwise in-
tractable motion planning problems (e.g., [11], [15], [19] to
list a few). While a complete algorithm requires an explicit
representation of the configuration free space, sampling-
based algorithms merely draw samples from that space and
then opportunistically build a graph of collision-free paths
between them. By trading (deterministic) completeness in
favor of probabilistic completeness, sampling-based algo-
rithms are able to solve problems using a fraction of the
computational resources required by complete algorithms.

Sampling-based algorithms map a sequence of sampled
points to a sequence of graphs, and often rely on a com-
mon high-level structure including, e.g., the Probabilistic
Roadmap (PRM) [11], the Rapidly Exploring Random Tree
(RRT) [15], [14], their asymptotically optimal versions RRT∗

and PRM∗ [10], and many others derived from them. Let
G = (V,E) denote the output of the algorithm, where G is
a graph defined by its vertex set V and edge set E.

At each iteration, a new sample xsample is generated from
the obstacle-free space. A set of candidate nodes Vnear ⊂ V
is selected for possible connection with xsample. That is, for
each x ∈ Vnear, if a local planner determines a collision-free
path exists from x to xsample, then xsample is added to V
and [x, xsample] is added to E.

Sampling-based algorithms avoid the construction of an
explicit free-space map and therefore generally rely on
rejection sampling for generating new configurations (i.e.,
xsample) from the free space [13]. In rejection sampling a
point is first drawn from the configuration space1 and then

1Often either from a uniform distribution or deterministically (for
example, using a Halton sequence or a space-filling curve).

Sampling Distribution Induced by Our Algorithm in 2D

(a) (b) (c) (d)
Fig. 1: The induced sampling distribution of an augmented kd-tree after 104,
105, and 106 samples are shown in (a), (b), and (c), respectively. White-
black represent low-high sampling probability density. The actual obstacle
configuration appears in (d), obstacles are red.

statically collision checked. If the point is in collision, then
it is discarded and a new point is drawn. This continues until
a collision-free point is found.

Once a collision-free sample is found, it is immediately
submitted to a proximity query in order to discover candi-
dates for graph connection. There are many data structures
which are used for these proximity queries, most notably
spatial indices like bounding volume hierarchies (e.g., kd-
trees and quad-trees), and tessellations (e.g., triangulations
and Voronoi diagrams) [21].

Our key insight is that many spatial indices passively
encode information about the location of obstacles within the
configuration space; by exposing and exploiting this informa-
tion we can significantly reduce the number of rejected (i.e.
unnecessary) future samples. In particular, by augmenting the
index to record empirical collision information, it is possible
to generate samples from a distribution that converges to
uniform sampling over the free space, while simultane-
ously finding connection candidates for the new sample.
In exchange for reducing the number of rejected samples,
we accept a constant-factor increase in the space/memory
complexity of our spatial index, and sacrifice independence
of consecutive samples.

II. PREVIOUS WORK

In the context of sampling-based motion planing, a variety
of techniques have been proposed to increase the chances of
sampling from within narrow corridors [9], [7], [20], goal
regions [6], or other particular regions of the configuration
space [1], [23], [3]. Surveys of these methods can be found
in [4], [16], and [22]. In contrast to our work, none are
concerned with sampling uniformly from the free space.

Our idea can be described as an adaptive sampling al-
gorithm as defined in [16] (i.e., a sampling algorithm that
changes its sampling distribution as it runs, in response to
new information that is gathered and/or other stimuli). [5]

presents a canonical algorithm for adaptive sampling from a
univariate distribution that learns the envelope and squeezing
functions. The main differences between [5] and our work is
that we consider a multivariate distribution with an arbitrarily
large number of variables (i.e., dimensions), and we focus
on the problem of uniform sampling from an unknown (but
discoverable) subspace of interest.

Related work in adaptive sampling for sampling-based
motion planning follows. Hsu et al. [8] generate new sam-
ples such that the chance of sampling a particular point
is inversely proportional to the local density of previous
samples near that point. A similar idea is pursued in [22],
where samples are drawn less densely in open regions of the
configuration space and more densely in cluttered regions.
Phillips et al. [17] weight the probability of sampling from
a particular region based on the properties of the nearest
node as follows: the weight is inversely proportional to a
function of the nearby node’s A∗ cost and its number of
graph-neighbors, and proportional to a function of its order
in the sample sequence. A modification in [18] additionally
assign to new samples a weight that is inversely proportional
to a function of the local density of previous samples.
The main difference between all of these methods and our
idea is that they focus on generating samples from sparsely
sampled portions of the configuration space—a practice that
is actually expected to decrease the probability a new point is
sampled from the free space2. In contrast, we are interested in
producing the opposite behavior—as more and more samples
are generated, our algorithm has an increasing probability of
sampling from the free space.

Finally, [12] is arguably related to our idea because it
records statistics of total successful vs. unsuccessful samples
(although it uses this data to test a stopping criterion that
results in probably more than a user defined proportion of
the free-space being explored). While we propose recording
similar statistics in the spatial index structure, we use this
data to guide future sampling instead.

III. ALGORITHM

In this section we illustrate the application of our method
by describing the sampling and search algorithm for an
augmented kd-tree. The algorithm presented in this section
may be used as a guide to implementing the method for other
hierarchical spatial data structures where nodes at any depth
form a tessellation of the indexed space.

Our method relies on storing extra data in each node
of a kd-tree. A kd-tree is a special type of binary search
tree that can efficiently determine the nearest neighbor(s) of
a query point xq within a previously defined finite set of
points X ⊂ Rd [2]. Each node in the kd-tree is a Node data
structure, the fields of which are summarized in table I.

Each node v in a kd-tree defines an axis-aligned hyper-
rectangle H(v) ⊂ Rd. An interior node v is assigned a

2The rejection of obstacle space points upon collision detection results
in free-space regions becoming increasingly populated with old samples
(e.g., relative to obstacle space), and hence the sparsely populated obstacle
space is sampled increasingly frequently.

TABLE I: The Node data structure

field type description
x vector ∈ Rd point associated with this node
j integer ∈ {1..d} index of the split plane
c[2] Node array references to the children of the node (two

in the case of a kd-tree), or a null reference
∅ if this is a leaf node

P Node reference to the parent node
T float ∈ R weighted number of samples generated

from H
F float ∈ R weighted number of collision free samples

generated from H
M float ∈ R estimated measure of free space in H

Algorithm 1: GenerateSample (H, v)

if v.c[0] = v.c[1] = ∅ then1
x← SampleUniform (H) ;2
v.T ← v.T + 1 ;3
r = Collision-free (x) ;4
if r then5

v.x← x ;6
v.F ← v.F + 1 ;7
(v.c[0], v.c[1])← Split (v, x) ;8
for i = {0, 1} do9

v.c[i].P ← v ;10
v.c[i].j ← (v.j + 1) mod d ;11
w ← Measure (v.c[i]) /Measure (v) ;12
v.c[i].T ← w · v.T ;13
v.c[i].F ← w · v.F ;14

v.c[i].M =
(
v.c[i].F
v.c[i].T

)
Measure (v.c[i]) ;15

else16
u← SampleUniform ([0, v.M]) ;17
if u ≤ v.c[0].M then18

(x, r)← GenerateSample (v.c[0]) ;19
else20

(x, r)← GenerateSample (v.c[1]) ;21

v.M = v.c[0].M + v.c[1].M ;22

return (x, r)23

point x ∈ X ∩ H(v) and an index j ∈ {1 . . . d}. Its two
children are the hyper-rectangles found by splitting H(v)
with a hyperplane passing through x and orthogonal to the
j-th axis. Leaf nodes are the same as interior nodes except
that they are not assigned a point and have no children (yet).
Finally, for any H ⊂ Rd, Measure (v) returns the measure
of the set H(v), and SampleUniform (H) returns a point
drawn from a uniform distribution over H .

Our algorithm appears in Algorithm 1 (this recursive
procedure may be replaced with two loops and a stack if
desired). Note that we store three additional fields in each
node of our our augmented kd-tree: T , F , and M . Both T
and F are only used by leaf nodes. T is the total number of
samples taken from H , and F is the number of those samples
that are collision free. When a leaf node generates a new
sample (and thus creates its children), each child inherits a
weighted version of T and F from the parent. Both values
are weighted by the relative measure of space contained in
the child vs. the parent, and both account for the successful
sample before weighting (lines 3, 7-14). M is our estimate

of the measure of free space contained in H . For leaf nodes,
M = F

T Measure (H), line 14. For non-leaf nodes, M is the
cumulative sum of the values of M contained in the node’s
children M = c[0].M + c[1].M , line 21.

The procedure starts at the root of the tree, and then
recursively picks a child using a weighted coin flip (lines 16-
20). In particular, the chance of recursing on the i-th child
is calculated as v.c[i].M/v.M (lines 16-17). Once a leaf
node is reached, the sample point is drawn from a uniform
distribution over that leaf’s hyper-rectangle (line 2).

The sampled point and the result of the collision check
are propagated back up the tree so that the statistics of each
interior node in the recursion can be updated (lines 21-22).
As more samples are generated by descendants of a particular
node, the estimate of that node’s free space improves. Thus,
future sampling more accurately reflect the true distribution
of free space. Formal proofs are presented in Section IV.

Lastly, we recall the algorithm for performing nearest
neighbor queries3 in a kd-tree: For a query point xq , we
perform a depth first search to find the leaf node v0 contain-
ing xq . During this search we push each touched node into
a stack S. We initialize the nearest neighbor xNN with the
point corresponding to v0. Then, while the stack is not empty,
we pop the top node v off the stack and do the following:
• for the point x associated with node v, if
d(x, xq) < d(xNN , xq) we replace xNN with x.

• if the hypercube of any unsearched children contains a
point x such that d(x, xq) < d(xNN , xq), we push that
child onto the stack.

Thus, we may simultaneously generate a new sample and
perform nearest neighbor queries by replacing the initial
depth first search with Algorithm 1, at the same runtime
complexity of doing a nearest-neighbor search.

IV. ANALYSIS

A. Convergence to a uniform distribution over free space

We now prove that the sampling distribution induced by
our algorithm converges to a uniform distribution over the
free space.

Let SO, SF, and S denote the obstacle space, free space,
and total space respectively, where S = SO ∪ SF and
SO ∩ SF = ∅. We use the notation S (·) to denote the
subset of space associated with a data structure element,
e.g., H = S (v) is the hyper-rectangle of v. We also use
P (·) to denote probability, and L (·) to denote the Lebesgue
measure, e.g., L (SF) is the hyper-volume of the free space.
We assume that the configuration space is bounded and that
the boundaries of SO, SF, and S have measure zero.

Let C denote the set of children of v. Each child ci ∈ C
represents a subset of S (v) such that

⋃
i S (ci) = S (v) and

S (ci) ∩ S (cj) = ∅ for all i 6= j. In a kd-tree |C| = 2.
Note the wording in this section is tailored to the kd-tree

version of our algorithm; however, the analysis is generally

3k-nearest neighbor, range search, and many other proximity queries
follow this same general structure.

applicable to any related data-structure4.
Let fn (·) be the probability density function for the

sample returned by Algorithm 1, when the kd-tree contains
n points. Let fF (·) represent a probability density function
such that fF (xa) = fF (xb) for all xa, xb ∈ SF and
fF (xc) = 0 for all xc ∈ SO. Let XF and Xn denote random
variables drawn from the distributions defined by fF (·) and
fn (·), respectively.

In the appendix, we prove that
P (limn→∞ fn (x) = fF (x)) = 1, for almost all x ∈ S, i.e.,
that the induced distribution of our algorithm converges to
a distribution that is almost surely equal to fF (x) almost
everywhere in S, possibly excluding a measure-zero subset.

B. Performance and runtime

We now discuss the runtime of our algorithm (kd-tree
based) in order to evaluate when it should be used vs. more
traditional rejection sampling.

Let ckd be the work associated with performing graph
operations (nearest neighbor searching, or insertion) on a
standard kd-tree. Let cgen denote the time to generate a
sample from a distribution uniform over a hyper-rectangle,
and let ccc denote the time required to collision check a
point. Note that ckd = O (log n) for a balanced kd-tree of n
points and cgen = O (d), where d is the dimensionality of the
configuration space. As compared to rejection sampling, our
method changes the computation time required to generate
a candidate sample from cgen to cgen · ckd.

Our method also changes the expected number of trials
required to sample a point x ∈ SF from S/SF to Etrials,
where Etrials = S/SF for the first sample (n = 1) and
then limn→∞ Etrials = 1 (i.e., Etrials approaches 1 as the
number of successful samples increases).

Thus, our method changes the expected time to both find
a point x ∈ SF and then perform graph operations on kd-tree
from (cgen + ccc) (S/SF) + ckd to (cgen · ckd + ccc)Etrials.
Note that S/SF is a constant (assuming a static environ-
ment). We expect our method to have a practical im-
provement in cases where we may reasonably expect
Etrials < (S/SF) (1/ckd).

V. EXPERIMENTS AND RESULTS

In order to validate our method and profile its performance
we perform several experiments for different robotic systems
and obstacle sets. We present results for three systems: a
planar point, a concave planar object, and a 4-link thin-
arm manipulator in the plane. Figure 2 shows the obstacle
sets used for the the planar object and the manipulator,
respectively. Those used for the planar point are identical
to those used for the planar object.

4In particular, we only require a tree-based space partitioning spatial
index that is theoretically capable of containing any countably infinite set
of points X , and such that the hyper-space of the leaf nodes covers the
configuration space S =

⋃
v∈VL S (v). Our proofs can be modified to the

general case by replacing ‘hyper-rectangle’ with ‘hyper-space’ and assuming
that a weighted die determines the recursion path (instead of a coin). When
the die is thrown at v it has |C| sides and the weight of the i-th side is
determined by the estimated value of L (S (ci)) /L (S (v)) (i.e. the relative
amount of free space believed to exist in child ci vs. its parent v).

[i] [ii]

[iii] [iv]

Fig. 2: Obstacle sets for experiments. For experiments with the planar point
and planar object, [i] and [ii] are mazes of different complexity. For the
planar manipulator [iii] is a multi-crevice obstacle set with the manipulator
in the center crevice and [iv] is a wall with a narrow opening.

In each experiment we compare the results for both (1)
sampling a collision-free configuration and (2) sampling a
collision-free configuration and finding it’s nearest neighbor
among previously sampled collision-free configurations. We
compare the results for (a) the kd-tree implementation de-
scribed in Section III and (b) classical rejection sampling.
We use the abbreviations KDS (1a), KDSS (2a), RS (1b)
and RSS (2b). Note that (2b) is comprised of the subroutines
(1b) would replace in an otherwise standard implementation
of RRT, RRT*, PRM, or PRM*.

Results are averaged over thirty runs, and collision check-
ing is performed using an axis-aligned bounding box tree.

A. Sampling Performance

The biased sampling method sacrifices independence of
the sampling process, so we must question the quality of the
induced sampling distribution. We compare the sample sets
generated by KDS and RS by comparing the distribution of
circumspheres in the Delaunay Triangulation of the point set
(the radius of largest circumsphere being the L2 dispersion
of the point set [13]).

Figure 3 illustrates the histogram of the radii of these
circumspheres for obstacle sets [i] and [iii] using KDS and
RS. As these plots show, the point set generated using KDS
is quite similar to that of the point set generated using RS.
The Kolmogorov-Smirnov p-values for the tests are 1.000,
0.893, and 0.999 respectively, suggesting the way in which
KDS sacrifices independence in the sampling process does
not significantly affect the quality of the sampling sequence.

B. Planar Point Robot

Figure 4 shows the profiling results for the planar point
experiments. In obstacle set [i] the obstacles are grouped
to create wide regions of free space, while in [ii] they are
arranged to divide up the free-space into many narrow pas-
sages. The latter should require a larger number of samples
before the information encoded in the kd-tree is sufficient

300 200 100 0 100 200 300
graph size, n (thousand)

0

50

100

150

200

ci
rc

um
-r

ad
iu

s

(a)

400 300 200 100 0 100 200 300 400
graph size, n (thousand)

0

200

400

600

800

1000

ci
rc

um
-r

ad
iu

s

(b)

6000 4000 2000 0 2000 4000 6000
graph size, n (thousand)

0

2

4

6

8

10

12

ci
rc

um
-r

ad
iu

s

(c)

KDS
RS

Fig. 3: Histogram of circumsphere sizes for the Delaunay Triangulation of
the point set generated after 1000 collision-free samples in experiments with
(a) the planar point and obstacle set [i], (b) the planar object and obstacle
set [i], (c) the planar manipulator and obstacle set [iii].

KDS KDSS RS RSS

0 2 4 6 8 10
graph size, n (thousand)

0.065

0.070

0.075

0.080

0.085

0.090
it

er
at

io
n

ti
m

e
(m

s)

(a)

0 2 4 6 8 10
graph size, n (thousand)

0.120

0.125

0.130

0.135

0.140

0.145

it
er

at
io

n
ti

m
e

(m
s)

(b)

0 2 4 6 8 10
graph size, n (thousand)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ex
pe

ri
m

en
ta

lp
(s

uc
es

s)

(c)

0 2 4 6 8 10
graph size, n (thousand)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

ex
pe

ri
m

en
ta

lp
(s

uc
es

s)

(d)

Fig. 4: Observed iteration times (a), (b), and incremental sampling success
rates (c), (d), for the planar point experiments. Figures (a) and (c) are for
obstacle set [i] while (b) and (d) are for obstacle set [ii].

to improve the sampling success rate in KDSS. Indeed, as
Figure 4(d) shows the sampling success rate for this obstacle
set increases more slowly than for obstacle set [i], shown in
Figure 4(c). Note also that the proportion of the configuration
space that is collision-free is higher for obstacle set [ii] than
[i]. For these two reasons the iteration time for KDSS and
obstacle set [ii] is not much different than for RSS. We see a
3-9% improvement, however, in the runtime time of KDSS
over RSS for both obstacle sets as shown in Figures 4(a) and
4(b).

C. Planar Object Robot

While the planar point experiment is useful for gaining
some intuition the low dimension of the configuration space
and ease of collision checking are somewhat unrepresentative

KDS KDSS RS RSS

0 2 4 6 8 10
graph size, n (thousand)

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

it
er

at
io

n
ti

m
e

(m
s)

(a)

0 2 4 6 8 10
graph size, n (thousand)

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

it
er

at
io

n
ti

m
e

(m
s)

(b)

0 2 4 6 8 10
graph size, n (thousand)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

ex
pe

ri
m

en
ta

lp
(s

uc
es

s)

(c)

0 2 4 6 8 10
graph size, n (thousand)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ex
pe

ri
m

en
ta

lp
(s

uc
es

s)

(d)

Fig. 5: Observed iteration times (a), (b), and incremental sampling success
rates (c), (d), for the planar object experiments. Figures (a) and (c) are for
obstacle set [i] while (b) and (d) are for obstacle set [ii].

of the challenging planning problems which are typically
solved with sampling based planning algorithms.

Figure 5 shows the profiling results for the planar object
experiments. Both KDS and KDSS are approximately 20%
faster than RS and RSS for both obstacle sets [i] (Figure 5(a))
and [ii] (Figure 5(b)). Note that for these obstacle sets,
sampling (RS and KDS) alone takes roughly the same
amount of time as sampling and searching (RSS and KDSS).
Clearly in these experiments sampling (and static collision
checking) contributes to the majority of the runtime while
graph searching, which is the theoretical bottleneck in sam-
pling based planning algorithms, has yet to begin dominating
the runtime with an index of 10,000 points. The experimental
sampling success rates (Figures 5(c) and 5(d)) show that the
hyper-rectangular decomposition of the configuration space
does not cover the configuration space as well in three
dimensions as it does in two, with the success rate topping
out at around 70% in these experiments. Never the less, this
is a significant improvement over the 30%-35% success rate
of rejection sampling in these experiments, leading to the
significant reduction in runtime.

D. Planar Manipulator Robot

Experiments with the planar manipulator allows us to
consider the performance of this method in higher dimension
configuration spaces. Figure 6 shows the profiling results
for the planar manipulator experiments. Note that obstacle
set [iii] has a more complex representation with more of
the configuration space in collision. In this case KDS and
KDSS yield a 30% runtime improvement over both RS and
RSS (Figure 6(a)). For obstacle set [iv] KDS and KDSS
yield a 40% runtime improvement (Figure 6(b)). We see in
Figure 6(d) that the proportion of the configuration space
which is collision-free is quite high in this case (nearly 70%
collision-free) which is similar to the proportion of free space
in the planar point experiment for obstacle set [i]. However,

KDS KDSS RS RSS

0 2 4 6 8 10
graph size, n (thousand)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

it
er

at
io

n
ti

m
e

(m
s)

(a)

0 2 4 6 8 10
graph size, n (thousand)

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

it
er

at
io

n
ti

m
e

(m
s)

(b)

0 2 4 6 8 10
graph size, n (thousand)

0.05

0.10

0.15

0.20

0.25

ex
pe

ri
m

en
ta

lp
(s

uc
es

s)

(c)

0 2 4 6 8 10
graph size, n (thousand)

0.65

0.70

0.75

0.80

0.85

0.90

ex
pe

ri
m

en
ta

lp
(s

uc
es

s)

(d)

Fig. 6: Observed iteration times (a), (b), and incremental sampling success
rates (c), (d), for the planar manipulator experiments. Figures (a) and (c)
are for obstacle set [iii] while (b) and (d) are for obstacle set [iv].

because collision checking the manipulator requires much
more work than the point, the increased sampling success
rate yields higher payoff.

We also note that for obstacles set [iii] our method tops
out at a sampling success rate of only 25% which is even
less than in the planar object experiments. However, just as
with the planar object experiments, this increase in sampling
success rate is significant enough to lead to the runtime
improvement that we observe.

VI. SUMMARY AND CONCLUSIONS

We present a new method for sampling such that samples
are drawn from a distribution that provably converges to
uniform sampling over an initially unknown but discoverable
and static subset of space. Our method works by recording
the observed distribution of the subset of interest vs. the
total space within subspaces covered by a spatial index. We
demonstrate the specifics of this method with an algorithm
for augmenting kd-trees. The observed number of samples
(e.g., from the subset of interest vs. the total number samples)
at each node is used to guide future sampling.

Our method can also be viewed as constructing an approx-
imate obstacle representation that becomes more refined as
more samples are generated (and samples are generated from
areas that contain obstacles with decreasing probability).
However, experiments show that the number of samples
required to characterize the free space sufficiently well to
reduce rejection sampling over head is relatively small in
many complex planning problems. The complexity of gener-
ating new samples also inherits a log n factor of complexity
from the kd-tree around which it is built, but in practice
this appears to be a useful compromise. In particular, this
compromise is worthwhile when
• the complexity of the obstacle field is high, i.e. a large

number of and/or high resolution obstacles

• the complexity of interference testing is high, i.e. a
complex mapping from (high) configuration space to
workspace volumes

• the proportion of the configuration space which is
collision-free is low

We expect our method to be especially useful as a sub-
routine in sample based motion planning which are already
bound to search operations on a spatial index.

REFERENCES

[1] Nancy M. Amato, O. Burchan Bayazit, Lucia K. Dale, Christopher
Jones, and Daniel Vallejo. Obprm: an obstacle-based prm for 3d
workspaces. In Proceedings of the third workshop on the algorithmic
foundations of robotics on Robotics : the algorithmic perspective:
the algorithmic perspective, WAFR ’98, pages 155–168, Natick, MA,
USA, 1998. A. K. Peters, Ltd.

[2] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18:509–517, September 1975.

[3] V. Boor, M. H. Overmars, and A. F. van der Stappen. The gaussian
sampling strategy for probabilistic roadmap planners. In IEEE Int.
Conf. on Robotics and Automation, pages 1018–1023, 1999.

[4] Roland Geraerts and Mark H. Overmars. A comparative study of
probabilistic roadmap planners. In Workshop on the Algorithmic
Foundations of Robotics, pages 43–57, 2002.

[5] W.R. Gilks and P. Wild. Adaptive rejection sampling for gibbs
sampling. Applied Statistics, pages 337–348, 1992.

[6] B. Glavina. Solving findpath by combination of goal-directed and
randomized search. In Robotics and Automation, 1990. Proceedings.,
1990 IEEE International Conference on, pages 1718 –1723 vol.3, may
1990.

[7] D. Hsu, Tingting Jiang, J. Reif, and Zheng Sun. The bridge test
for sampling narrow passages with probabilistic roadmap planners.
In Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE
International Conference on, volume 3, pages 4420 – 4426 vol.3, sept.
2003.

[8] D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. In Robotics and Automation, 1997. Proceedings.,
1997 IEEE International Conference on, volume 3, pages 2719–2726.
IEEE, 1997.

[9] David Hsu, Lydia E. Kavraki, Jean-Claude Latombe, Rajeev Motwani,
and Stephen Sorkin. On finding narrow passages with probabilistic
roadmap planners. In Proceedings of the third workshop on the
algorithmic foundations of robotics on Robotics : the algorithmic
perspective: the algorithmic perspective, WAFR ’98, pages 141–153,
Natick, MA, USA, 1998. A. K. Peters, Ltd.

[10] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. Int. Journal of Robotics Research, 30(7):846–894,
June 2011.

[11] L. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on . . . , January 1996.

[12] J.-P. Laumond and C. Nissoux. Visibility-based probabilistic roadmaps
for motion planning. Journal of Advanced Robotics, 14(6):477–493,
2000.

[13] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[14] S. LaValle and J. J. Kuffner. Randomized kinodynamic planning.

International Journal of Robotics Research, 20(5):378–400, 2001.
[15] S.M. LaValle and J.J. Kuffner Jr. Rapidly-exploring random trees:

Progress and prospects. In Algorithmic and computational robotics:
new directions: the fourth Workshop on the Algorithmic Foundations
of Robotics, page 293. AK Peters, Ltd., 2001.

[16] Stephen R. Lindemann and Steven M. LaValle. Current issues in
sampling-based motion planning. In Paolo Dario and Raja Chatila,
editors, Robotics Research, volume 15 of Springer Tracts in Ad-
vanced Robotics, pages 36–54. Springer Berlin / Heidelberg, 2005.
10.1007/11008941 5.

[17] Jeff M. Phillips, L. E. Kavraki, and N. Bedrosian. Spacecraft
rendezvous and docking with real-time randomized optimization. In
AIAA (American Institute of Aeronautics and Astronautics) Guidance,
Navigation and Control Conference, Austin, TX, August 2003.

[18] J.M. Phillips, N. Bedrossian, and L.E. Kavraki. Guided expansive
spaces trees: a search strategy for motion- and cost-constrained state
spaces. In Robotics and Automation, 2004. Proceedings. ICRA ’04.
2004 IEEE International Conference on, volume 4, pages 3968 – 3973
Vol.4, 26-may 1, 2004.

[19] E. Plaku, K.E. Bekris, B.Y. Chen, A.M. Ladd, and L.E. Kavraki.
Sampling-based roadmap of trees for parallel motion planning.
Robotics, IEEE Transactions on, 21(4):597 – 608, Aug 2005.

[20] Mitul Saha, Jean-Claude Latombe, Yu-Chi Chang, and Friedrich Prinz.
Finding narrow passages with probabilistic roadmaps: The small-step
retraction method. Autonomous Robots, 19(3):301–319, December
2005.

[21] H. Samet. Foundations of multidimensional and metric data structures.
Morgan Kaufmann, 2006.

[22] G. Sánchez and J.C. Latombe. On delaying collision checking in prm
planning: Application to multi-robot coordination. The International
Journal of Robotics Research, 21(1):5–26, 2002.

[23] S.A. Wilmarth, N.M. Amato, and P.F. Stiller. Maprm: a probabilistic
roadmap planner with sampling on the medial axis of the free space. In
Robotics and Automation, 1999. Proceedings. 1999 IEEE International
Conference on, volume 2, pages 1024 –1031 vol.2, 1999.

APPENDIX

We begin by observing that the nodes in the kd-tree may
be classified into three sets:
• free nodes, VF, the set of nodes v such that

L (S (v) ∩ SO) = 0 and ∃x |x ∈ S (v) ∧ x ∈ SF.
• obstacle nodes, VO, the set of nodes, v such that

L
(
S
(
vO
)
∩ SF

)
= 0 and ∃x |x ∈ S (v) ∧ x ∈ SO

• mixed nodes, VM contains all nodes do not fit the
definition of a free node or a mixed node.

Although our algorithm is ignorant of the type of any given
node (otherwise we would not need it to begin with), an
oracle would know that free nodes contain free space almost
everywhere, obstacle nodes contain obstacle space almost
everywhere, and mixed nodes contain both free space and
obstacle space. Note that if v ∈ VM and L (S (v)) > 0 then
L (S (v) ∩ SO) > 0 and L (S (v) ∩ SF) > 0. It is possible
for v such that L (S (v)) = 0 to be both an obstacle node and
a free node if it exists on the the boundary between SO and
SF; because their cumulative measure is zero, such nodes
can be counted as both obstacle nodes and free nodes (or
explicitly defined as either one or the other) without affecting
our results.

We are particularly interested in the types of leaf nodes,
because they cover S and also hold all of the mass that
determines the induced sampling distribution.

Let VL denote the set of leaf nodes, and let VFL, VOL,
VML denote the set of leaf nodes that are also free nodes,
obstacle nodes, and mixed nodes, respectively. We use
S (V) =

⋃
v∈V S (v) to denote the space contained in all

nodes in a set V . Figure 7 depicts the space contained in the
set of leaf nodes, VL, of a particular kd-tree.

Recall that v.M is the estimated probability mass that our
algorithm associates with node v. Let D denote tree depth.

Proposition 1. P (Xn ∈ S (v)) = v.M/
∑
v′∈VL

v′.M

Proof. This is true by the construction of our algorithm. In
particular, from lines 16-17 and 21.

G
C

A B D F

Q R

S

T

U

E

N

O PH I

39

5

RQA B

22

NE GF

UTSC
O PD IH

A D F G H

L N R S T

I

P

Fig. 7: The hyper-rectangles of leaf nodes (Top) from the corresponding
kd-trees (Bottom). Letters show the correspondence between nodes and
their hyper-rectangles. Left and Right show 28 and 41 points, respectively.
Obstacle space is red. Free nodes are gray and mixed nodes are white.
Letters show the correspondence. Descendants of a free node are always
free. Mixed nodes eventually produce free node descendants (the probability
that an obstacle node is produced is 0).

Proposition 2. For all v at depth D > 1 such that
L (S (v)) > 0 there exists some δ > 0 such that v.F > δ.

Proof. All nodes at depth D > 1 have a parent v.P , which
must have generated at least one sample in order to create
v. Since L (S (v)) > 0, we know that L (S (v.P)) > 0.
Therefore, by construction (lines 7, 11, 13) we know
v.F ≥ L (S(v))

L (S(v.P)) > 0. Thus, the lemma is true for δ such

that 0 < δ < L (S(v))
L (S(v.P)) .

Lemma 3. For a particular node v, let Nn (v) be the number
of times that a sample was generated from S (v) when the
kd-tree has n nodes. Then, for all v such that L (S (v)) > 0,
P (limn→∞Nn (v) = +∞) = 1.

Proof. We begin by obtaining two intermediate results:
First, v.F ≤ v.T for all v by construction (lines 3,

5, 7, 11, 13). Thus, for all leaf nodes v ∈ VL it is
guaranteed v.M ≤ L (S (v)) by the definition of M (line
12). Recall that the set of leaf nodes covers the space
S
(
VL
)

= S and that the space in each leaf node is non-
overlapping S (vi) ∩ S (vj) = ∅ for all vi, vj ∈ VL, vi 6= vj .
Thus, we can sum over all leaf nodes to obtain the bound:∑
v∈VL v.M ≤

∑
v∈VL L (S (v)) = L (S).

Second, using Proposition 2 we know that for any particu-
lar node v with positive measure L (S (v)) > 0 there exists
some δ such that v.F > δ.Thus, the following bound al-
ways holds: v.M = L (S (v)) v.Fv.T ≥ L (S (v)) δ

v.T (where
the first equality is by definition). Note this is the worst
case situation in which node v always samples from obstacle
space (and thus v remains a leaf node forever). Thus,
v.M ≥ L (S (v)) δ

v.T .
Combining the first and second results yields:

P (Xn ∈ S (v)) =
v.M∑

v′∈VL v′.M
≥ δL (S (v))

v.TL (S)

Where the left equality is by Proposition 1. By definition
δL (S(v))

L (S) = k is a constant, and so P (Xn ∈ S (v)) ≥ k
v.T . By

definition, v.T only increase when we draw a sample from

S (v). Let n̂ be the iteration at which the previous sample was
generated from S (v). The probability that we never again
generate a sample from S (v) is bounded:

P
(

lim
n→∞

Nn (v) = Nn̂ (v)
)
≤ lim
n→∞

n∏
i=n̂

(
1− k

v.T

)
= 0

for all v.T <∞ and Nn̂ (v) <∞ (and thus n̂ <∞). The
rest of the proof follows from induction.

Lemma 4. Let VF
n be the set of free nodes in

the tree of n samples. Then, for all x ∈ SF,
limn→∞ P

(
∃ v ∈ VF

n |x ∈ S (v)
)

= 1

Proof. Let Ξε,x be the open L1-ball with radius ε that is
centered at point x. For all x ∈ int(SF) there exists some
ε > 0 for which Ξε,x ⊂ SF. Therefore, it is sufficient to prove
that for x ∈ SF, limn→∞ P

(
∃ v ∈ VF

n | v ⊂ Ξε,x
)

= 1.
Without loss of generality, we now consider a particular

x. At any point during the run of the algorithm there is some
leaf node vL | vL 3 x.

Lemma 3 guarantees that vL 3 x will almost surely split
into two children, one of which will also contain x, etc.
Let vD,x represent the node at depth D that contains x. Let
XD ∈ S (vD,x) be the sample point that causes vD,x to split.
Let x[i] refer to the i-th coordinate of x. Thus, the splitting
plane is normal to the D mod d-axis, and intersects that axis
at XD[D mod d], where d is the dimensionality of the space.

Each time the current leaf vD,x 3 x splits
P (XD ∈ Ξε,x ∧XD[i] < x[i])=

L (S(vD,x)∩S(Ξε,x))
2L (S(vD,x)∩SF) >0. By

construction L (S(vD+d,x)∩S(Ξε,x))
L (S(vD+d,x)∩SF) ≥ L (S(vD,x)∩S(Ξε,x))

L (S(vD,x)∩SF) so
lim
D→∞

P (∃XD |XD ∈ Ξε,x ∧XD[D mod d] < x[d mod D])=1.

A similar argument can be made for X[i] > x[i],
lim
D→∞

P (∃XD |XD ∈ Ξε,x ∧XD[D mod d] > x[D mod d])=1.
Thus, in the limit as D →∞, there will almost surely
be a set of 2d points {XD1 , . . . , XD2d

} sampled at levels
D1, . . . , D2d, such that XDi ∈ Ξε,x for i = {1, . . . , 2d}, and
i = Di mod d and XDi [i] < X[i], and i = Dd+i mod d
and XDd+i [i] > X[i]. By construction, Xmaxi(Di) is on a
splitting plane that borders a node v such that S (v) 3 x
and v ⊂ Ξε,x (and thus v ∈ VF). Lemma 3 implies that
P (limn→∞D =∞) = 1 for vD,x |S (vD,x) 3 x.

Corollary 5. P
(
limn→∞L

(
S
(
VML

)
∩ SF

)
= 0
)

= 1.

Corollary 6. P
(
limn→∞L

(
SF \ S

(
VFL

))
= 0
)

= 1.

Corollary 7.
P
(
limn→∞

∑
v∈VFL L (S (v)) = L (SF)

)
= 1.

Lemma 8. P (limn→∞ v.M = 0) = 1 for all obstacle leaf
nodes v ∈ VOL.

Proof. There are two cases, one for L (S (v)) = 0 and
another for L (S (v)) > 0. The first is immediate given
v.M

4
= v.F

v.T L (S (v)). For the second, we observe that
P (∃x |x ∈ S (v) ∧ x ∈ SF) = 0 by definition, and so v.F
will almost surely not change (and v will remain a leaf node
almost surely). Thus, P (v.T =∞) = 1 by Lemma 3, and

so P
(
limn→∞

v.F
v.T = 0

)
= 1. Using the definition of v.M

finishes the proof.

Corollary 9. limn→∞ P
(
Xn ∈ S

(
VOL

))
= 0.

Lemma 10. P (limn→∞ v.M = 0) = 1 for all mixed leaf
nodes v ∈ VML.

Proof. v.F will almost surely not change by Corollary 5.
The rest of the proof is similar to Lemma 8.

Corollary 11. limn→∞ P
(
Xn ∈ S

(
VML

))
= 0.

Corollary 12.
limn→∞ P

(
Xn ∈

(
S
(
VML

)
∪ S

(
VOL

)))
= 0

We observe that this result does not conflict with Lemma 3.
Each node with finite space is sampled an infinite number
of times; however, the proportion of samples from obstacle
nodes and mixed nodes approaches 0 in the limit as n→∞.

Lemma 13. limn→∞ P (Xn ∈ SO) = 0

Proof. This follows from Corollary 12 and the fact that
L
(
SO \

(
S
(
VML

)
∪ S

(
VOL

)))
= 0.

Lemma 14. P (limn→∞ v.M = L (S (v))) = 1, for all free
nodes v ∈ VF.

Proof. There are two cases, one for when L (S (v)) = 0 and
another for when L (S (v)) > 0. The former is immediate
given the definition of v.M , and so we focus on the latter.
When a new free node vD ∈ VF is created at depth D > 1
of the tree it initializes vD.F > 0 and vD.T > 0 based
on similar values contained in its parent (and wighted by
the relative measures of vD vs. its parent). By Lemma 3
we know that vD will almost surely generate two children
vD+1,0 and vD+1,1. By construction (lines 11-13), they will
be initialized with vD+1,j .F = (vD.F + 1)

L (S(vD+1,j))
L (S(vD)) and

vD+1,j .T = (vD.T + 1)
L (S(vD+1,j))

L (S(vD)) , for j ∈ {0, 1}. These
children will also generate their own children almost surely,
etc. Because vD is a free node, all samples from its sub-
tree will result in more free node descendants being created
almost surely. Let Ĉn be the set containing all leaf node
descendants of vD at iteration n. By construction (line
24), as soon as |Ĉn| ≥ 1, then vD.M =

∑
v∈Ĉn v.M .

We now examine a single term of the latter summation,
i.e., the term for node vD+k at depth D + k. In particular.
vD+k.M = vD+k.F

vD+k.T
L (S (vD+k)). For the remainder of this

proof we will abuse our notation and let ‖ · ‖ = L (S (·)) to
make the following equations more readable. Unrolling the
recurrence relation for vD+k.F gives:
vD+k.F =

‖vD+k‖
‖vD+k−1‖

(
. . .
‖vD+2‖
‖vD+1‖

(
‖vD+1‖
‖vD‖

(vD.F + 1) + 1

)
. . . + 1

)

where vD+k−1, . . . , vD+2, vD+1, vD, are the ancestors of
vD+k going up the tree to vD. This can be rearranged:

vD+k.F =

‖vD+k‖
‖vD‖

vD.F +
‖vD+k‖
‖vD‖

+
‖vD+k‖
‖vD+1‖

+ . . . +
‖vD+k‖
‖vD+k−1‖

Similarly, the vD+k.T recurrence relation is:

vD+k.T =

‖vD+k‖
‖vD‖

vD.T +
‖vD+k‖
‖vD‖

+
‖vD+k‖
‖vD+1‖

+ . . . +
‖vD+k‖
‖vD+k−1‖

limk→∞
‖vD+k‖
‖vD‖ = 0, also P

(
‖vD+k‖
‖vD+k−1‖ = 0

)
= 0 given

L (S (vD)) > 0, where we resume our normal notation.
Thus, P (limk→∞ vD+k.M = L (S (vD+k))) = 1.

Lemma 3 guarantees that P (limn→∞ k =∞) = 1
for all vD+k such that Ĉn 3 vD+k. Thus, by
summing over the members of Ĉn we get:
P
(

limn→∞
∑
v∈Ĉn v.M =

∑
v∈Ĉn L (S (v))

)
= 1.

vD.M =
∑
v∈Ĉn v.M by definition. Also by definition

S (vD) =
⋃
v∈Ĉn S (v) and vi ∩ vj = ∅ for all vi, vj ∈ Ĉn

such that i 6= j; therefore, L (S (vD)) =
∑
v∈Ĉn L (S (v)).

Substitution finishes the proof.

Note, Corollary 15 depends on Lemma 14 and Corollary 6:

Corollary 15.
P
(
limn→∞

∑
v∈VFL v.M = L (SF)

)
= 1.

Lemma 16. P (limn→∞ fn (x) = c) = 1 for all x and B
such that x ∈ B ⊂ SF and L (B) > 0

Proof. By Proposition 1 and Lemmas 14 and Corollary 15
we know that limn→∞ P (xn ∈ S (v)) = L (S(v))

L (SF) for
all free nodes v ∈ VF almost surely. By construction
(line 2) once a leaf node v ∈ VFL is reached, samples
are drawn uniformly from within S (v). Thus, the
uniform probability density of drawing xn ∈ S (v),
given that the algorithm has decided to draw from
within S (v), is fn (xn|xn ∈ S (v)) = 1

L (S(v)) . Therefore,
the posterior probability density limn→∞ fn (xn) =
limn→∞ fn (xn|xn∈S (v))P (xn∈ S (v))= 1

L (SF) almost
surely, which is constant and independent of v ∈ VFL, and
thus holds almost everywhere in

⋃
v∈VFL S (v)—and thus

almost everywhere in SF (by Corollary 6).

Theorem 17. P (limn→∞ fn (x) = fF (x)) = 1.

Proof. This is proved by combining Lemmas 13 and 16.

